Advertisement

A Remote Sensing Based Approach for Optimizing the Sampling Strategies in Crop Monitoring and Crop Yield Estimation Studies

  • Babacar NdaoEmail author
  • Louise Leroux
  • Abdoul Aziz Diouf
  • Valerie Soti
  • Bienvenu Sambou
Conference paper
Part of the Southern Space Studies book series (SOSPST)

Abstract

In the context of a growing population and impacts of climate changes on agricultural lands and food security, improving crop monitoring of smallholder farming systems is crucial to reach the Sustainable Development Goal (SDG) 2 «Zero hunger». There is an increasing scientific interest in understanding the effects of the biodiversity induced by tree-based agricultural systems on agricultural production and human nutrition. To elucidate the contribution of landscape diversity to agricultural productivity, this study proposes a sampling strategy guided by landscape heterogeneity to account for tree diversity. We propose a simple and reproducible approach based on remote sensing, object-based segmentation and unsupervised classification. The study was conducted in the Senegalese Peanut Basin characterized by a tree-based agricultural system dominated by Faidherbia albida.

Assuming that agricultural landscapes with similar trees and crop cover composition will have similar phenological development, a multiresolution segmentation was performed on Sentinel-2 NDVI time series to obtain homogeneous landscape units. For each unit, landscape diversity proxies were derived from various geospatial data sources, namely vegetation productivity and its dynamic over the last 15 years, actual evapotranspiration, woody cover rates and soil type. Landscape units were classified using a hierarchical clustering based on the derived landscape diversity proxies to obtain a landscape heterogeneity gradient divided into four classes. Based on this classification, an optimized sampling strategy was produced to carry out an inventory campaign of tree biodiversity. More than 8000 trees including 41 species have been inventoried. The proposed approach will also be used to help in the choice of a crop fields network representative of the landscape diversity to improve the spatial representativeness of crop yield estimations.

Keywords

Remote sensing Tree-based agricultural system Landscape heterogeneity Segmentation Landscape classification Sampling strategy 

References

  1. Bayala, J., Sanou, J., Teklehaimanot, Z., Kalinganire, A., Ouédraogo, S.J.: Parklands for buffering climate risk and sustaining agricultural production in the Sahel of West Africa. Curr. Opin. Environ. Sustain. 6, 28–34 (2014)CrossRefGoogle Scholar
  2. Bellón, B., Bégué, A., Lo Seen, D., Lebourgeois, V., Evangelista, B.A., Simões, M., Demonte Ferraz, R.P.: Improved regional-scale Brazilian cropping systems’ mapping based on a semi-automatic object-based clustering approach. Int. J. Appl. Earth Obs. Geoinf. 68, 127–138 (2018).  https://doi.org/10.1016/J.JAG.2018.01.019 ADSCrossRefGoogle Scholar
  3. Brandt, M., Hiernaux, P., Tagesson, T., Verger, A., Rasmussen, K., Diouf, A.A., Mbow, C., Mougin, E., Fensholtet, R.: Woody plant cover estimation in drylands from Earth observation based seasonal metrics. Remote Sens. Environ. 172, 28–38 (2016)ADSCrossRefGoogle Scholar
  4. Diaw, M.: Proposition d’une méthode statistique pour la modélisation des relations entre pratiques agricoles, paysage et abondance d’insectes, Mémoire de fin de cycle, Diplôme d’Ingénieur des Travaux Statistiques, ENSAE/ANSD/CIRAD, p. 67 (2015)Google Scholar
  5. Faye, M.D., Weber, J.C., Mounkoro, B., Dakouo, J.M.: Contribution of parkland trees to farmers’ livelihoods: a case study from Mali. Dev. Pract. 20(3), 428–434 (2010)CrossRefGoogle Scholar
  6. Fritz, S., See, L., Mccallum, I.N., You, L., Bun, A., Moltchanova, E., Duerauer, M., Albrecht, F., Schill, C., Perger, C., Havlik, P., Mosnier, A., Thornton, P., Wood-sichra, U., Herrero, M., Becker-Reshef, I.: Mapping global cropland and field size. Glob. Chang. Biol. 21, 1–13 (2015).  https://doi.org/10.1111/gcb.12838 CrossRefGoogle Scholar
  7. Griffon, M., Mallet, B.: En quoi l’agroforesterie peut-elle contribuer à la révolution doublement verte? Bois et forêts des tropiques. 260(2), 41–51 (1999). http://agritrop.cirad.fr/392006/1/document_392006.pdf Google Scholar
  8. Husson, F., Josse, J., Pagès, J.: Principal component methods – hierarchical clustering – partitional clustering: why would we need to choose for visualizing data? Unpublished Data (2010). http://www.sthda.com/english/upload/hcpc_husson_josse.pdf
  9. Kassambara, A.: Articles – Principal component methods in R: practical guide, HCPC – Hierarchical Clustering on Principal Components: Essentials. STHDA (Statistical tools for high-throughput data analysis) (2017a). http://www.sthda.com/english/articles/31-principal-component-methods-in-r-practical-guide/117-hcpc-hierarchical-clustering-on-principal-components-essentials/. Accessed 28 Jul 2018
  10. Kassambara, A.: Articles – Principal component methods in R: practical guide, FAMD – Factor Analysis of Mixed Data in R: Essentials. STHDA (Statistical tools for high-throughput data analysis) (2017b). http://www.sthda.com/english/articles/31-principal-component-methods-in-r-practical-guide/115-famd-factor-analysis-of-mixed-data-in-r-essentials/. Accessed 28 Jul 2018
  11. Leroux, L., Bégué, A., Lo Seen, D., Jolivot, A., Kayitakire, F.: Driving forces of recent vegetation changes in the Sahel: lessons learned from regional and local level analyses. Remote Sens. Environ. 191, 38–54 (2017).  https://doi.org/10.1016/j.rse.2017.01.014 ADSCrossRefGoogle Scholar
  12. Ndao, B., Soti, V., Menozzi, P., Silvie, P.: Réalisation d’un protocole d’échantillonnage spatialisé, pour l’étude de la régulation naturelle des ravageurs de cultures de bas-fonds rizicoles, dans la zone de Pélébina au Bénin. Revue Ivoirienne des Sciences et Technologie. 29, 193–212 (2017)Google Scholar
  13. Parkouda, C., Diawara, B., Ganou, L., Lamien, N.: Potentialités nutritionnelles des produits de 16 espèces fruitières locales au Burkina Faso. Science et technique, Sciences appliquées et Technologies. 1, 35–47 (2007)Google Scholar
  14. Pielou, E.C.: The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144 (1966).  https://doi.org/10.1016/0022-5193(66)90013-0 CrossRefGoogle Scholar
  15. Shannon, C.E.: A mathematical theory of communications. Bell Syst. Tech. J. 27, 379–423 (1948)MathSciNetCrossRefGoogle Scholar
  16. Simensen, T., Halvorsen, R., Erikstad, L.: Methods for landscape characterisation and mapping: a systematic review. Land Use Policy. 75, 557–569 (2018).  https://doi.org/10.1016/J.LANDUSEPOL.2018.04.022 CrossRefGoogle Scholar
  17. Simpson, E.H.: Measurement of diversity. Nature. 163, 688 (1949).  https://doi.org/10.1038/163688a0 ADSCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Babacar Ndao
    • 1
    • 2
    Email author
  • Louise Leroux
    • 3
    • 4
  • Abdoul Aziz Diouf
    • 1
  • Valerie Soti
    • 3
    • 4
  • Bienvenu Sambou
    • 2
  1. 1.Centre de Suivi Ecologique (CSE)DakarSenegal
  2. 2.Institut des Sciences de l’Environnement (ISE), UCADDakarSenegal
  3. 3.CIRAD, UPR AIDADakarSenegal
  4. 4.AIDA, Univ Montpellier, CIRADMontpellierFrance

Personalised recommendations