Advertisement

Phanerozoic Mass Extinctions and Indian Stratigraphic Records

  • G. V. R. Prasad
  • Varun Parmar
Chapter
  • 111 Downloads
Part of the Springer Geology book series (SPRINGERGEOL)

Abstract

The paper discusses important changes in faunal and floral diversity during the Phanerozoic Eon. These are represented by the ‘big five’ mass extinctions, viz. end-Ordovician, Frasnian-Famennian boundary of the Devonian Period, Permian-Triassic boundary, Triassic-Jurassic boundary, and the Cretaceous-Palaeogene boundary. Major biological and geological events and geochemical anomalies associated with these mass extinction boundaries and potential causes for the extinctions such as bolide impact, volcanism, sea level changes, ocean anoxia, and methane hydrate release are discussed in detail. Though the causes for these mass extinction events are still being debated, wider acceptance for glaciation-related climatic changes at the end of the Ordovician and climatic perturbation with ocean anoxia at the end of Devonian exists. The remaining three mass extinctions, i.e., at the end of Permian, end of Triassic, and end of Cretaceous coincide with volcanic eruptions of large igneous provinces. The end Cretaceous extinction also coincides with the impact of an asteroid at Chicxulub in Mexico. In recent years, the eruption of Siberian Traps of Russia and related climatic perturbations were considered as the major cause for the Permian-Triassic boundary extinction. Likewise, the eruption of the Central Atlantic Magmatic Province was linked to the Triassic-Jurassic boundary mass extinction. The Deccan volcanism and bolide impact at Chicxulub, may have equally contributed to the demise of a large number of species at the end of Cretaceous. The Indian stratigraphic record for these mass extinction events is poorly documented for the end-Ordovician, end-Devonian, and end-Triassic events. The best studied section for the Permian-Triassic boundary is the Guryul Ravine section in Jammu and Kashmir where the transition from the Permian to Triassic is well preserved and the boundary is precisely delineated based on conodonts, negative δ13C isotope excursion, geochemical signatures, and change in depositional environments. Although extensive work has been carried out on the Cretaceous-Palaeogene boundary sections in the Deccan volcanic province, no precisely delineated boundary clay horizon has been demarcated so far. All the outcrop sections of the Deccan intertrappean sections preserve either Maastrichtian part of the Cretaceous or Early Palaeocene P1a or P1b zones. The subsurface ONGC well sections also reveal K/Pg boundary transition but no precise boundary layer. However, the marine K/Pg boundary section of Um Sohryngkew River preserves the K/Pg boundary layer as attested by the faunal changes and iridium anomaly.

Keywords

Phanerozoic big five mass extinctions GSSP Indian records Asteroid impacts and volcanism Marine regression Glaciation 

Notes

Acknowledgements

The authors are thankful to L. Ranjit Singh and Shreya Mishra, Department of Geology, University of Delhi, and K. Deepak Singh, Department of Geology, University of Jammu, for their help in drafting the figures. G.V.R.P. acknowledges funding support from J.C. Bose National Fellowship from SERB, New Delhi, for this work. V.P. also thanks SERB for financial support in the form of a major research project (EMR/2017/004143).

References

  1. Abramovich S, Keller G (2003) Planktic foraminiferal response to latest Maastrichtian abrupt warm event: a case study from mid-latitude DSDP Site 525. Mar Micropaleontol 48:225–249CrossRefGoogle Scholar
  2. Acharyya SK, Lahiri TC (1991) Cretaceous palaeogeography of the Indian subcontinent: a review. Cretac Res 12:3–26CrossRefGoogle Scholar
  3. Aldridge RJ, Smith MP (1993) Conodonta. In: Benton MJ (ed) The fossil record, vol 2. Chapman & Hall, London, pp 563–572Google Scholar
  4. Algeo TJ, Scheckler SE (1998) Terrestrial–marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events. Philos Trans R Soc B Biol Sci 353:113–128CrossRefGoogle Scholar
  5. Algeo TJ, Scheckler SE (2010) Land plant evolution and weathering rate changes in the Devonian. J Earth Sci 21:75–78CrossRefGoogle Scholar
  6. Algeo TJ, Chen ZQ, Fraiser ML, Twitchett RJ (2011) Terrestrial–marine teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology 308(1–2):1–11Google Scholar
  7. Algeo TJ, Hannigan R, Rowe H, Brookfield M, Baud A, Krystyn L, Ellwood BB (2007) Sequencing events across the Permian-Triassic boundary, Guryul Ravine (Kashmir, India). Palaeogeogr Palaeoclimatol Palaeoecol 252(1–2):328–346CrossRefGoogle Scholar
  8. Algeo TJ, Marenco PJ, Saltzman MR (2016) Co-evolution of oceans, climate, and the biosphere during the ‘Ordovician Revolution’: a review. Palaeogeogr Palaeoclimatol Palaeoecol 458:1–11CrossRefGoogle Scholar
  9. Alroy J (2010) Fair sampling of taxonomic richness and unbiased estimation of origination and extinction rates. In: Alroy J, Hunt G (eds) Quantitative methods in paleobiology, vol 16. The Paleontological Society, Knoxville, TN, pp 55–80Google Scholar
  10. Alroy J et al (2008) Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97–100CrossRefGoogle Scholar
  11. Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinctions. Science 208:1095–1108CrossRefGoogle Scholar
  12. Ameta SS, Gaur RK (1980) New fossil find from the Muth Quartzite, Lahaul and Spiti district, Himachal Pradesh, India. Bull Indian Geologists Assoc 13(1):73–76Google Scholar
  13. Archibald JD (1996) Dinosaur extinction and the end of an era: what the fossils say. Columbia University Press, New York. 240pGoogle Scholar
  14. Archibald JD, Clemens WA, Padian K, Rowe T, MacLeod N, Barrett PM, Gale A, Holroyd P, Sues HD, Arens NC, Horner JR, Wilson GP, Goodwin MB, Brochu CA, Lofgren DL (2010) Cretaceous extinctions: multiple causes. Science 328:973CrossRefGoogle Scholar
  15. Averbuch O, Tribovillard N, Devleeschouwer X, Riquier L, Mistiaen B, Van Vliet-Lanoe B (2005) Mountain building-enhanced continental weathering and organic carbon burial as major causes for climatic cooling at the Frasnian–Famennian boundary (c. 376 Ma)? Terra Nova 17:25–34CrossRefGoogle Scholar
  16. Bajpai S (1996) Iridium anomaly in Anjar intertrappean beds and the K/T boundary. Mem Geol Soc India 31:313–319Google Scholar
  17. Bajpai S, Prasad GVR (2000) Cretaceous age for Ir-rich Deccan intertrappean deposits: palaeontological evidence from Anjar, western India. J Geol Soc Lond 157:257–260CrossRefGoogle Scholar
  18. Baksi AK (2005) Comment on “40Ar/39Ar dating of the Rajahmundry Traps, eastern India and their relations to the Deccan Traps” by Knight et al. (2003) [Earth Planet Sci Lett 208:85–99]. Earth Planet Sci Lett 239:368–373CrossRefGoogle Scholar
  19. Baksi AK, Byerly GR, Chan L, Farrar E (1994) Intracanyon flows in the Deccan province, India? Case history of the Rajahmundry Traps. Geology 22:605–608CrossRefGoogle Scholar
  20. Bambach RK, Knoll AH, Wang SC (2004) Origination, extinction, and mass depletions of marine diversity. Paleobiology 30:522–542CrossRefGoogle Scholar
  21. Banerjee J (1997) Floral changes across the Permian-Triassic Boundary in Damodar in Auranga valleys. Palaeobotanist 46(12):97–100Google Scholar
  22. Banerji J, Bose MN (1977) Some Lower Triassic plant remains from Asansol region. India Palaeobotanist 24:202–210Google Scholar
  23. Bardet N (1994) Extinction events among Mesozoic marine reptiles. Hist Biol 7:313–324CrossRefGoogle Scholar
  24. Barnes CR, Zhang S (1999) Pattern of conodont extinction and recovery across the Ordovician-Silurian boundary interval. Acta Univ Carol Geol 43:211–212Google Scholar
  25. Bassi UK (1988) Orthis aff. rustica from the Devonian quartzarenite of the Muth Formation, Khimku La (Kinnaur), Himachal Himalaya. Curr Sci 37(6):329–331Google Scholar
  26. Baud A, Holser WT, Magaritz M (1989) Permian–Triassic of the Tethys: carbon isotope studies. Geol Rundsch 78:649–677CrossRefGoogle Scholar
  27. Becker RT, House MR (1994) International Devonian goniatite zonation, Emsian to Givetian, with new records from Morocco. Cour Forschungsinst Senck 169:79e135Google Scholar
  28. Becker L, Poreda RJ, Hunt AG, Bunch TE, Rampino M (2001) Impact event at the Permian-Triassic boundary: evidence from extraterrestrial noble gases in fullerenes. Science 291:1530–1533CrossRefGoogle Scholar
  29. Becker L, Poreda RJ, Basu AR, Pope KO, Harrison TM, Nicholson C, Iasky R (2004) Bedout: a possible end-Permian impact crater offshore of northwestern Australia. Science 304(5676):1469–1476CrossRefGoogle Scholar
  30. Becker RT, Gradstein FM, Hammer O (2012) The Devonian period. In: Gradstein FM, Ogg J, Schmitz M, Ogg G (eds) The geologic time scale 2012. Elsevier, Oxford, UK, pp 559–601CrossRefGoogle Scholar
  31. Benton MJ (1991) What really happened in the Late Triassic? Hist Biol 5:263–278CrossRefGoogle Scholar
  32. Benton MJ (1995) Diversification and extinction in the history of life. Science 268:52–58CrossRefGoogle Scholar
  33. Benton MJ, Twitchett RJ (2003) How to kill (almost) all life: the end-Permian extinction Event. Trends Ecol Evol 18:358–365CrossRefGoogle Scholar
  34. Benton MJ, Tverdokhlebov VP, Surkov MV (2004) Ecosystem remodelling among vertebrates at the Permian–Triassic boundary in Russian. Nature 432:97–100CrossRefGoogle Scholar
  35. Bhandari N, Shukla PN, Pandey J (1987) Iridium enrichment at Cretaceous/Tertiary boundary in Meghalaya. Curr Sci 56(19):1003–1005Google Scholar
  36. Bhandari N, Shukla PN, Azmi RJ (1992) Positive Europium anomaly at the Permo-Triassic Boundary, Spiti, India. Geophys Res Lett 19:1531–1534CrossRefGoogle Scholar
  37. Bhandari N, Shukla PN, Castognoli CG (1993) Geochemistry of some K/T sections in India. Palaeogeogr Palaeoclimatol Palaeoecol 104:199–211CrossRefGoogle Scholar
  38. Bhandari N, Gupta M, Pandey J, Shukla PN (1994) Chemical profiles in K/T boundary section of Meghalaya, India: cometary, asteroidal or volcanic. Chem Geol 113:45–60CrossRefGoogle Scholar
  39. Bhandari N, Shukla PN, Ghevariya ZG, Sundaram SM (1995) Impact did not trigger Deccan Volcanism: evidence from Anjar K-T boundary intertrappean sediments. Geophys Res Lett 22:433–436CrossRefGoogle Scholar
  40. Bhandari N, Shukla PN, Ghevariya ZG, Sundaram SM (1996) K-T boundary layer in Deccan intertrappeans at Anjar, Kutch. In: Ryder G, Fastovsky D, Gartner S (eds) The cretaceous–tertiary event and other catastrophes in earth history, Geological Society of America, Special Paper, vol 307. Geological Society of America, Boulder, CO, pp 417–424Google Scholar
  41. Bhargava ON (1997) Geological account of the Tethyan rocks in the Spiti Valley: their comparison with Tethyan successions in other parts of the Himalaya. Wadia Institute of Himalayan Geology, Dehra DunGoogle Scholar
  42. Bhargava ON (2008) An updated introduction to the Spiti geology. J Palaeontol Soc India 53(2):113–129Google Scholar
  43. Bhargava ON, Bassi UK (1998) Geology of Spiti-Kinnaur, Himachal Himalaya. Mem Geol Surv India 124:210Google Scholar
  44. Bhatt DK, Arora RK (1984) Otoceras bed of Himalaya and Permian-Triassic boundary - assessment and elucidation with conodont data. J Geol Soc India 25:720–727Google Scholar
  45. Black BA, Elkins-Tanton LT, Rowe MC, Ukstins-Peate I (2012) Magnitude and consequences of volatile release from the Siberian Traps. Earth Planet Sci Lett 317–318:363–373CrossRefGoogle Scholar
  46. Blackburn TJ, Olsen PE, Bowring SA, McLean NM, Kent DV, Puffer J, McHone G, Rasbury ET, Et-Touhami M (2013) Zircon U-Pb geochronology links the end-Triassic extinction with the Central Atlantic Magmatic Province. Science 340:941–945CrossRefGoogle Scholar
  47. Bond DPG, Grasby SE (2017) On the causes of mass extinctions. Palaeogeogr Palaeoclimatol Palaeoecol 478:3–29CrossRefGoogle Scholar
  48. Bond DPG, Wignall PB (2008) The role of sea-level change and marine anoxia in the Frasnian-Famennian (Late Devonian) mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol 263:107–118CrossRefGoogle Scholar
  49. Bowring SA, Erwin DH, Jin YG, Martin MW, Davidek K, Wang W (1998) U/Pb zircon geochronology and tempo of the end-Permian mass extinction. Science 1998(280):1039–1045CrossRefGoogle Scholar
  50. Brand U (1989) Global climatic changes during the Devonian-Mississippian: stable isotope biogeochemistry of brachiopods. Palaeogeogr Palaeoclimatol Palaeoecol 75:311–329CrossRefGoogle Scholar
  51. Brenchley PJ, Marshall JD, Underwood CJ (2001) Do all mass extinctions represent an evolution crisis? Evidence from the Late Ordovician. Geol J 36(3–4):329–340CrossRefGoogle Scholar
  52. Brookfield ME, Twitchett RJ, Goodings C (2003) Palaeoenvironments of the Permian–Triassic transition sections in Kashmir, India. Palaeogeogr Palaeoclimatol Palaeoecol 198:353–371CrossRefGoogle Scholar
  53. Brookfield ME, Shellnutt JG, Qi L, Hannigan R, Bhat GM, Wignall PB (2010) Platinum element group variations at the Permo-Triassic boundary in Kashmir and British Columbia and their significance. Chem Geol 272:12–19CrossRefGoogle Scholar
  54. Brookfield ME, Algeo TJ, Hannigan R, Williams J, Bhat GM (2013) Shaken and stirred: seismites and tsunamites at the Permian-Triassic boundary, Guryul Ravine, Kashmir, India. PALAIOS 28:568–582CrossRefGoogle Scholar
  55. Cappetta H, Duffin C, Zidek J (1993) Chondrichthyes. In: Benton MJ (ed) The fossil record 2. Chapman & Hall, London, pp 593–609Google Scholar
  56. Chatterjee S, Scotese CR, Bajpai S (2017) The restless Indian plate and its epic voyage from Gondwana to Asia: its tectonic, paleoclimatic, and paleobiogeographic evolution, Geological Society of America, Special Paper, vol 529. Geological Society of America, Boulder, CO, pp 1–147Google Scholar
  57. Chen ZQ, Benton MJ (2012) The timing and pattern of biotic recovery following the end-Permian mass extinction. Nat Geosci 5:375–383CrossRefGoogle Scholar
  58. Chen D, Qing H, Li R (2005) The Late Devonian Frasnian–Famennian (F/F) biotic crisis: insights from d13Ccarb, d13Corg and 87Sr/86Sr isotopic systematics. Earth Planet Sci Lett 235(1–2):151–166CrossRefGoogle Scholar
  59. Chenet AL, Quidelleur X, Fluteau F, Courtillot V (2007) 40K/40Ar dating of the main Deccan large igneous province: further evidence of KTB age and short duration. Earth Planet Sci Lett 263:1–15CrossRefGoogle Scholar
  60. Chiappe LM (1995) The first 85 million years of avian evolution. Nature 378:349–355CrossRefGoogle Scholar
  61. Christie M, Holland SM, Bush AM (2013) Contrasting the ecological and taxonomic consequences of extinction. Paleobiology 39(4):538–559Google Scholar
  62. Claeys P, Casier LG (1994) Microtektite-like impact glass associated with the Frasnian-Famennian boundary mass extinction. Earth and Planetary Science Letters 122(3–4):303–315Google Scholar
  63. Cooper A (1994) Calibration of mitochondrial 12s rDNA sequences indicate many modern avian orders survived the K–T boundary impact. Geological Society of America, Abstracts with Programs, 26, A–395Google Scholar
  64. Copeland MJ (1981) Latest Ordovician and Silurian ostracode faunas from Anticosti Island Québec. See Lespérance 1981:185–195Google Scholar
  65. Copper P (1986) Frasnian/Famennian mass extinction and cold-water oceans. Geology 14:835–839CrossRefGoogle Scholar
  66. Copper P (2002) Reef development at the Frasnian-Famennian mass extinction boundary. Palaeogeogr Palaeoclimatol Palaeoecol 181:27–66CrossRefGoogle Scholar
  67. Courtillot V (1990) Deccan volcanism at the Cretaceous–Tertiary boundary: past climatic crises as a key to the future? Palaeogeogr Palaeoclimatol Palaeoecol 189:291–299CrossRefGoogle Scholar
  68. Courtillot V, Besse J, Vandamme D, Montigny R, Jaeger JJ, Cappetta H (1986) Deccan flood basalts at the Cretaceous/Tertiary boundary. Earth Planet Sci Lett 80(3–4):361–374CrossRefGoogle Scholar
  69. Courtillot V, Feraud G, Maluski H, Vandamme D, Moreau MG, Besse J (1988) Deccan flood basalts and the Cretaceous/Tertiary boundary. Nature 333(6176):843–846CrossRefGoogle Scholar
  70. Courtillot V, Kravchinsky VA, Quidelleur X, Renne PR, Gladkochub DP (2010) Preliminary dating of the Viluy Traps (eastern Siberia): eruption at the time of Late Devonian extinction events? Earth Planet Sci Lett 300:239–245CrossRefGoogle Scholar
  71. Cripps JA, Widdowson M, Spicer RA, Jolley DW (2005) Coastal ecosystem responses to late stage Deccan Trap volcanism: the post-K-boundary (Danian) palynofacies of Mumbai (Bombay), west India. Palaeogeogr Palaeoclimatol Palaeoecol 216:303–332CrossRefGoogle Scholar
  72. Cuny G (1995) French vertebrate faunas and the Triassic–Jurassic boundary. Palaeogeogr Palaeoclimatol Palaeoecol 119:343–358CrossRefGoogle Scholar
  73. Dal Corso J, Marzoli A, Tateo F, Jenkyns HC, Bertrand H, Youbi N, Mahmoudi A, Font E, Buratti N, Cirilli S (2014) The dawn of CAMP volcanism and its bearing on the end-Triassic carbon cycle disruption. J Geol Soc Lond 171:153–164CrossRefGoogle Scholar
  74. Davies JHFL, Marzoli A, Bertrand N, Youbi M, Ernesto M, Schaltegger U (2017) End-Triassic mass extinction started by intrusive CAMP activity. Nat Commun 8:15596CrossRefGoogle Scholar
  75. De Vleeschouwer D, Crucifix M, Bounceur N, Claeys P (2014) The impact of astronomical forcing on the Late Devonian greenhouse climate. Glob Planet Chang 120:65–80CrossRefGoogle Scholar
  76. Dickins JM, Zunyi Y, Hongfu Y, Lucas SG, Acharyya SK (1997) Late Palaeozoic and Early Mesozoic circum-Pacific events and their global correlation. Cambridge University Press, Cambridge. 245pCrossRefGoogle Scholar
  77. Dogra NN, Singh RY, Singh YR (2004) Palynological assemblage from the Anjar intertrappeans, Kutch district, Gujarat: age implications. Curr Sci 86(12):1596–1597Google Scholar
  78. Doyle P, Donovan DT, Nixon M (1994) Phylogeny and systematics of the Coleoidea. Univ Kansas Paleontol Contrib 5:1–15Google Scholar
  79. Draganits E, Brady SJ, Briggs DEG (2001) A Gondwana Coastal Arthropod Ichnofauna from the Muth formation (Lower Devonian), Northern India: paleoenvironment and tracemaker behaviour. PALAIOS 16:126–147CrossRefGoogle Scholar
  80. Draganits E, Mawson R, Talent J, Krystyn L (2002) Lithostratigraphy, conodont biostratigraphy and depositional environment of the Middle Devonian (Givetian) to Early Carboniferous (Tournaisian) Lipak formation in the Pin Valley (NW India). Riv Ital Paleontol Stratigraph 108(1):7–35Google Scholar
  81. Ebert J (1993) Globale events im Grenz–Bereich Mittel–/Ober–Devon (No. 59). Im Selbstverlag der Geologischen Institute der Georg August Universität Göttingen, GöttingenGoogle Scholar
  82. Elliot DH, Askin RA, Kyte FT, Zinsmeister WJ (1994) Iridium and dinocysts at the Cretaceous–Tertiary boundary on Seymour Island, Antarctica: implications for the K–T event. Geology 22:347–355CrossRefGoogle Scholar
  83. Ernst RE (2014) Large Igneous Provinces. Cambridge University Press, Cambridge, p 653CrossRefGoogle Scholar
  84. Ernst RE, Youbi N (2017) How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Palaeogeogr Palaeoclimatol Palaeoecol 478:30–52CrossRefGoogle Scholar
  85. Erwin DH (1993) The great Paleozoic crisis: life and death in the Permian. Columbia University Press, New York, p 327Google Scholar
  86. Erwin DH (1994) The Permo-Triassic extinction. Nature 367:231–236CrossRefGoogle Scholar
  87. Eshet Y, Rampino MR, Visscher H (1995) Fungal event and palynological record of ecological crisis and recovery across the Permian–Triassic boundary. Geology 23:967–970CrossRefGoogle Scholar
  88. Fan JX, Peng PA, Melchin MJ (2009) Carbon isotopes and event stratigraphy near the Ordovician–Silurian boundary, Yichang, South China. Palaeogeogr Palaeoclimatol Palaeoecol 276:160–169CrossRefGoogle Scholar
  89. Fantasia A, Adatte T, Spangenberg JE, Font E (2016) Palaeoenvironmental changes associated with Deccan volcanism, examples from terrestrial deposits from Central India. Palaeogeogr Palaeoclimatol Palaeoecol 441(1):165–180CrossRefGoogle Scholar
  90. Farley KA, Mukhopadhyay S (2001) An extraterrestrial impact at the Permian-Triassic boundary? Comment Sci 293:2343CrossRefGoogle Scholar
  91. Farley KA, Ward P, Garrison G, Mukhopadhyay S (2005) Absence of extraterrestrial 3He in Permian-Triassic age sedimentary rocks. Earth Planet Sci Lett 240:265–275CrossRefGoogle Scholar
  92. Feistmantel O (1881) The fossil flora of the Gondwana System 3(2–3). The flora of the Damuda and Panchet divisions. Mem Geol Surv India Palaeontol Indica 3(2):1–49Google Scholar
  93. Feng Q, He W, Gu S, Meng Y, Jin Y, Zhang F (2007) Radiolarian evolution during the latest Permian in South China. Glob Planet Chang 55:177–292CrossRefGoogle Scholar
  94. Flügel E (2002) Triassic reef patterns. Soc Sediment Geol Spec Publ 72:391–464Google Scholar
  95. Font E, Adatte T, Sial AN, de Lacerda LD, Keller G, Punekar J (2016) Mercury anomaly, Deccan volcanism, and the end-Cretaceous mass extinction. Geology 44(2):171–174CrossRefGoogle Scholar
  96. Fortey RA (1989) There are extinctions and extinctions: examples from the Lower Palaeozoic. Philos Trans R Soc Lond B Biol Sci 325:327–355CrossRefGoogle Scholar
  97. Foster CB, Stephenson MH, Marshall C, Logan GA, Greenwood PF (2002) A revision of Reduviasporonites Wilson 1962: description, illustration, comparison and biological affinities. Palynology 26:35–58CrossRefGoogle Scholar
  98. Gaffney ES, Chatterjee S, Rudra DK (2001) Kurmademys, a new side-necked turtle (Pelomedusoides: Bothremydidae) from the Late Cretaceous of India. Am Mus Novit 3321:1–16CrossRefGoogle Scholar
  99. Gansser A (1964) Geology of the Himalayas. Interscience Publications, London, p 289Google Scholar
  100. Garg R, Khowaja-Ateequzzaman, Prasad V (2006) Significant dinoflagellate cyst biohorizons in the Upper Cretaceous-Palaeocene succession in the Khasi Hills, Meghalaya. J Geol Soc India 67:737–747Google Scholar
  101. Garzanti E (1993) Himalayan ironstones, “superplumes,” and the breakup of Gondwana. Geology 21(2):105–108CrossRefGoogle Scholar
  102. Garzanti E, Angiolini L, Brunton H, Sciunnach D, Balini M (1998) The bashkirian fenestella shales and the moscovian chaetetid shales of the Tethys Himalaya: south Tibet, Nepal and India. J Asian Earth Sci 16:119–141CrossRefGoogle Scholar
  103. Gautam S, Awtar R, Tewari R, Goswami S (2016) Permian-Triassic palynofloral transition in Sohagpur Coalfield, South Rewa Gondwana Basin, Madhya Pradesh, India. Palaeobotanist 65(1):109–129Google Scholar
  104. Geldsetzer HHJ, Goodfellow WD, McLaren DJ (1993) The Frasnian-Famennian extinction event in a stable cratonic shelf setting: Trout River, NWT, Canada. Palaeogeogr Palaeoclimatol Palaeoecol 104:81–95CrossRefGoogle Scholar
  105. Gertsch B, Keller G, Adatte T, Garg R, Prasad V, Fleitmann D, Berner Z (2011) Environmental effects of Deccan volvanism across the Cretaceous-Tertiary transition in Meghalaya, India. Earth Planet Sci Lett 310:272–285CrossRefGoogle Scholar
  106. Ghevariya ZG (1988) Intertrappean dinosaurian fossils from Anjar area, Kachchh district, Gujarat. Curr Sci 57:248–251Google Scholar
  107. Ghosh SC, Nandi A, Ahmed G (1994) Study of Permo-Triassic boundary in Gondwana sequence of Raniganj basin, India. Ninth International Gondwana Symposium, Hyderabad, India, pp 179193Google Scholar
  108. Ghosh P, Bhattacharya SK, Shukla AD, Shukla PN, Bhandari N, Parthasarathy G, Kunwar AC (2002) Negative d13C excursion and anoxia at the Permo-Triassic boundary in the Tethys Sea. Curr Sci 83(4):498–502Google Scholar
  109. Girard C, Klapper G, Feist R (2005) Subdivision of the terminal Frasnian linguiformis conodont Zone, revision of the correlative interval of Montagne Noire Zone 13, and discussion of stratigraphically significant associated trilobites. In: Over DJ, Morrow JR, Wignall PB (eds) Understanding Late Devonian and Permian-Triassic biotic and climatic events: towards an integrated approach, Developments in palaeontology & stratigraphy, vol 20. Elsevier, Amsterdam, pp 181–198Google Scholar
  110. Glasby GP, Kunzendorf H (1996) Multiple factors in the origin of the Cretaceous/Tertiary boundary; the role of environmental stress and Deccan Trap volcanism. Geol Rundsch 85:191–210CrossRefGoogle Scholar
  111. Goel RK, Kato M, Jain AK, Srivastava SS (1987a) Fauna from the “Muth Quartzite”, Garhwal Himalaya, India. J Fac Sci Hokkaido Univ 22(2):247–257Google Scholar
  112. Goel RK, Srivastava SS, Verma RM (1987b) First record of indubitable Conodonts from Ordovician of Spiti and Garhwal Himalaya. Proceedings Sixth IGC, Roorkee, India, pp 183186Google Scholar
  113. Goin FJ, Pascual R, Tejedor MF, Gelfo JN, Woodburne MO, Case JA, Reguero MA, Bond M, López GM, Cione AL, Sauthier DU (2006) The earliest Tertiary Therian mammal from South America. J Vertebr Paleontol 26(2):505–510CrossRefGoogle Scholar
  114. Goswami A, Prasad GVR, Verma O, Flynn JJ, Benson RBJ (2013) A troodontid dinosaur from the latest Cretaceous of India. Nat Commun 4:1703CrossRefGoogle Scholar
  115. Gradstein FM, Ogg JG, Schmitz M, Ogg G (2012) The geologic time scale 2012. Elsevier, AmsterdamGoogle Scholar
  116. Grieve RAF (1991) Terrestrial impact: the record in the rocks. Meteoritics 26:175–194CrossRefGoogle Scholar
  117. Groves JR, Altiner D (2005) Survival and recovery of calcareous foraminifera pursuant to the end-Permian mass extinction. Comptes Rendus Palevol 4:419–432CrossRefGoogle Scholar
  118. Hallam A (1987) End-Cretaceous mass extinction event: argument for terrestrial causation. Science 238:1237–1242CrossRefGoogle Scholar
  119. Hallam A, Wignall PB (1997) Mass extinctions and their aftermath. Oxford University Press, OxfordGoogle Scholar
  120. Hallam A, Wignall PB (2004) Discussion on sea-level change and facies development across potential Triassic–Jurassic boundary horizons, SW Britain. J Geol Soc Lond 161:1053–1056CrossRefGoogle Scholar
  121. Halliday TJD, Cuff AR, Prasad GVR, Thanglemmoi MS, Goswami A (2016) New record of Egertonia (Elopiformes, Phyllodontidae) from the Late Cretaceous of South India. Pap Palaeontol 2:287–294CrossRefGoogle Scholar
  122. Hammarlund EU, Dahl TW, Harper DAT, Bond DPG, Nielsen AT, Bjerrum CJ, Schovsbo NH, Schönlaub HP, Zalasiewicz JA, Canfield DE (2012) A sulfidic driver for the end-Ordovician mass extinction. Earth Planet Sci Lett 331:128–139CrossRefGoogle Scholar
  123. Hansen HJ, Mohabey DM, Toft P (2001) No K/T boundary at Anjar, Gujarat, India: evidence from magnetic susceptibility and carbon isotopes. J Earth Syst Sci 110(2):133–142CrossRefGoogle Scholar
  124. Harper DAT, Hammarlund EU, Rasmussen CMØ (2014) End Ordovician extinctions: a coincidence of causes. Gondwana Res 25:1294–1307CrossRefGoogle Scholar
  125. Harwood DM (1988) Upper Cretaceous and Lower Paleocene diatom and silicoflagellate biostratigraphy of Seymour Island, Eastern Antarctic Peninsula. In: Feldmann RM, Woodburne MO (eds) Geology and paleontology of Seymour Island, Antarctic Peninsula, Geological Society of America Memoirs, vol 169. Geological Society of America, Boulder, CO, pp 55–129CrossRefGoogle Scholar
  126. Heim A, Gansser A (1939) Central Himalaya, geological observations of the Swiss expedition. Gebruder Fretz, 1939, vol 73(1). Hindustan Publishing Corporation (India), Delhi, p 245Google Scholar
  127. Herrmann AD, Patzkowsky ME (2002) Modeling the response of the Late Ordovician climate system to different forcing factors. Astrobiology 2:560–561CrossRefGoogle Scholar
  128. Hildebrand AR, Penfield GT, Kring DA, Pilkington M, Camargo A, Jacobsen SB, Boynton WV (1991) Chicxulub crater – a possible Cretaceous Tertiary boundary impact crater on the Yucatan Peninsular, Mexico. Geology 19:867–871CrossRefGoogle Scholar
  129. Hillebrandt AV, Krystyn L, Kürschner WM, Bonis NR, Ruhl M, Richoz S, Schobben MAN, Urlichs M, Bown PR, Kment K, McRoberts CA, Simms M, Tomãsových A (2013) The Global Stratotype Sections and Point (GSSP) for the base of the Jurassic System at Kuhjoch (Karwendel Mountains, Northern Calcareous Alps, Tyrol, Austria). Episodes 36:162–198CrossRefGoogle Scholar
  130. Hochuli PA, Hermann E, Vigran JO, Bucher H, Weissert H (2010) Rapid demise and recovery of plant ecosystems across the end-Permian extinction event. Glob Planet Chang 74:144–155CrossRefGoogle Scholar
  131. Hodych JP, Dunning GR (1992) Did the Manicouagan impact trigger end-of-Triassic mass extinction? Geology 20:51–54CrossRefGoogle Scholar
  132. Hollis CJ (1993) Latest Cretaceous to Late Paleocene radiolarian biostratigraphy: a New zonation from the New Zealand region. Mar Micropaleontol 21:295–327CrossRefGoogle Scholar
  133. Holser WT, Schönlaub HP, Boeckelmann K, Magaritz M, Orth CJ (1991) The Permian–Triassic of the Gartnerkofel-1 core (Carnic Alps, Austria): synthesis and conclusions. Abh Geologische Bundesanst 45:213–232Google Scholar
  134. Hongfu Y, Kexin Z, Jinnan T, Zunyi Y, Sunbao W (2001) The global stratotype section and point (GSSP) of the Permian–Triassic boundary. Episodes 24:102–114CrossRefGoogle Scholar
  135. Isozaki Y (2001) An extraterrestrial impact at the Permian–Triassic boundary? Science 293:23–43Google Scholar
  136. Isozaki Y (2009) Integrated “plume winter” scenario for the double-phased extinction during the Paleozoic–Mesozoic transition: The G-LB and P-TB events from a Panthalassan perspective. J Asia Earth Sci 36(6):459–480Google Scholar
  137. Jablonski D (1991) Extinctions: a paleontological perspective. Science 253:754–757CrossRefGoogle Scholar
  138. Jablonski D, Raup DM (1995) Selectivity of end-Cretaceous marine bivalve extinctions. Science 268:389–391CrossRefGoogle Scholar
  139. Jaiprakash BC, Singh J, Raju DSN (1993) Foraminiferal events across K/T boundary and age of Deccan volcanism in Palakollu area, Krishna-Godavari Basin, India. J Geol Soc India 41:105–117Google Scholar
  140. Jaiprakash BC, Venkatesh P, Panicker MV, Gilbert H, Paul SS (2016) Biochrono and tectonic framework for the origin of KTB canyon in Nagapattinam subbasin, Cauvery Basin. Proc Natl Acad Sci U S A 82(3):905–921Google Scholar
  141. Jay AE, Widdowson M (2008) Stratigraphy, structure and volcanology of the south-east Deccan continental flood basalt province: implications for eruptive extent and volumes. J Geol Soc Lond 165:177–188CrossRefGoogle Scholar
  142. Joachimski MM, Buggisch W (2002) Conodont apatite d18O signatures indicate climatic cooling as a trigger of the Late Devonian mass extinction. Geology 30:711–714CrossRefGoogle Scholar
  143. Joachimski MM, Ostertag Henning C, Pancost RD, Strauss H, Freeman KH, Littke R, Sinninghe Damsté JS, Racki G (2001) Water column anoxia, enhanced productivity and concomitant changes in d13C and d34S across the Frasnian–Famennian boundary (Kowala–Holy Cross Mountains/Poland). Chem Geol 175(1–2):109–131CrossRefGoogle Scholar
  144. Joachimski MM, Breisig S, Buggisch W, Talent JA, Mawson R, Gereke M, Morrow JR, Day J, Weddige K (2009) Devonian climate and reef evolution: insights from oxygen isotopes in apatite. Earth Planet Sci Lett 284(3–4):599–609CrossRefGoogle Scholar
  145. Johnson JG (1974) Extinction of perched faunas. Geology 2:479–482CrossRefGoogle Scholar
  146. Johnson KR, Hickey LJ (1990) Megafloral change across the Cretaceous–Tertiary boundary in the northern Great Plains and Rocky Mountains, U.S.A. In: Sharpton VL, Ward PD (eds) Global catastrophes in Earth History: an interdisciplinary conference on impact, volcanism, and mass mortality, Geological Society of America, Special Papers, vol 247. Geological Society of America, Boulder, CO, pp 433–444CrossRefGoogle Scholar
  147. Johnson JG, Sandberg CA (1988) Devonian eustatic events in the western United States and their biostratigraphic responses. Can Soc Pet Geol Mem 14:171–178Google Scholar
  148. Johnson JG, Klapper G, Elrick M (1996) Devonian transgressive-regressive cycles and biostratigraphy, northern Antelope Range, Nevada; establishment of reference horizons for global cycles. PALAIOS 11:3–14CrossRefGoogle Scholar
  149. Jones DS, Martini MA, Fike DA, Kaiho K (2017) A volcanic trigger for the Late Ordovician mass extinction? Mercury data from south China and Laurentia. Geology 45(7):631–634CrossRefGoogle Scholar
  150. Kalia P, Pande PK (1987) Record of Cyclolobus walkeri, from the base of Member-C Zewan formation, India. J Geol Soc India 29:271–276Google Scholar
  151. Kapoor HM (1996) The Guryul ravine section, candidate of the global stratotype and point (GSSP) of the Permian–Triassic boundary (PTB). In: Yin H (ed) The Paleozoic–Mesozoic Boundary: candidates of the Global Stratotype Section and Point of the Permian–Triassic Boundary. China University of Geosciences Press, Wuhan, pp 99–110Google Scholar
  152. Kapur VV, Das D, Bajpai S, Prasad GVR (2017) First mammal of Gondwanan lineage in the Early Eocene of India. Comptes Rendus Palevol 16(7):721–737CrossRefGoogle Scholar
  153. Kasprak AH, Sepúlveda J, Price Waldman R, Williford KH, Schoepfer SD, Haggart JW, Ward PD, Summons RE, Whiteside JH (2015) Episodic photic zone euxinia in the northeastern Panthalassic Ocean during the end-Triassic extinction. Geology 43:307–310CrossRefGoogle Scholar
  154. Kauffman EG (1986) High-resolution event stratigraphy: regional and global Cretaceous bio-events. In: Walliser OH (ed) Global bio-events, Lecture notes in earth sciences, vol 8. Springer, Berlin, pp 279–335CrossRefGoogle Scholar
  155. Keller G (1989) Extended period of extinctions across the Cretaceous/Tertiary boundary in planktonic foraminifera of continental shelf sections: implications for impact and volcanism theories. Bull Geol Soc Am 101:1408–1419CrossRefGoogle Scholar
  156. Keller G (2007) Impact stratigraphy: Old principle, new reality. Geological Society of America Special Paper 437:147–178Google Scholar
  157. Keller G (2014) Deccan volcanism, the Chicxulub impact, and the end-Cretaceous mass extinction: coincidence? Cause and effect? Geol Soc Am Spec Pap 505:57–89Google Scholar
  158. Keller G, Adatte T, Gardin S, Bartolini A, Bajpai S (2008) Main Deccan Volcanism phase ends near the K-T boundary: evidence from the Krishna-Godavari Basin, SE India. Earth Planet Sci Lett 268:293–311CrossRefGoogle Scholar
  159. Keller G, Adatte T, Bajpai S, Mohabey DM, Widdowson M, Khosla A, Sharma R, Khosla SC, Gertsch B, Fleitmann D, Sahni A (2009) K–T transition in Deccan traps and intertrappean beds in central India mark major marine Seaway across India. Earth Planet Sci Lett 282:10–23CrossRefGoogle Scholar
  160. Keller G, Bhowmick PK, Upadhyay H, Dave A, Reddy AN, Jaiprakash BC, Adatte T (2011) Deccan volcanism linked to the Cretaceous-Tertiary Boundary (KTB) mass extinction: new evidence from ONGC wells in the Krishna–Godavari Basin, India. J Geol Soc India 78:399–428CrossRefGoogle Scholar
  161. Keller G, Adatte T, Bhowmick PK, Upadhyay H, Dave A, Reddy AN, Jaiprakash BC (2012) Nature and timing of extinctions in Cretaceous-Tertiary planktic foraminifera preserved in Deccan intertrappean sediments of the Krishna-Godavari basin, India. Earth Planet Sci Lett 341–344:211–221CrossRefGoogle Scholar
  162. Kershaw S, Crasquin S, Li Y, Collin PY, Forel MB, Mu X, Baud A, Wang Y, Xie S, Maurer F, Guo L (2012) Microbialites and global environmental change across the Permian-Triassic boundary: a synthesis. Geobiology 10:25–47CrossRefGoogle Scholar
  163. Khosla SC, Nagori ML, Jakhar SR, Rathore AS (2009) Mixed marine, brackish water and non-marine macrofaunal association in the intertrappean beds (Early Palaeocene) of Jhilmili, Chhindwara District, Madhya Pradesh. J Geol Soc India 73:724–732CrossRefGoogle Scholar
  164. Kiselev AI, Yarmolyuk VV, Egorov KN, Chernyushov RA, Nikiphorov AV (2006) Middle Paleozoic basite magmatism of the north-west part of the Viluy rift: composition, sources, geodynamics. Petrology 6:660–682Google Scholar
  165. Klapper G (2000) Species of Spathiognathodontidae and Polygnathidae (Conodonta) in the recognition of Upper Devonian stage boundaries. Cour Forschungsinst Senck 220:153–159Google Scholar
  166. Klapper G, Uyeno TT, Armstrong DK, Telford PG (2004) Conodonts of the Williams Island and Long Rapids Formations (Upper Devonian, Frasnian-Famennian) of the Onakawana B Drillhole, Moose River Basin, Northern Ontario, with a revision of Lower Famennian species. J Paleontol 78(2):371–387CrossRefGoogle Scholar
  167. Knight KB, Renne PR, Baker J, Waight T, White N (2003) 40Ar/39Ar dating of the Rajahmundry traps, Eastern India and their relationship to the Deccan Traps. Earth Planet Sci Lett 208:85–99CrossRefGoogle Scholar
  168. Knight KB, Renne PR, Baker J, Waight T, White N (2005) Reply to 40Ar/39Ar dating of the Rajahmundry Traps, Eastern India and their relationship to the Deccan Traps: discussion’ by A.K. Baksi. Earth Planet Sci Lett 239:374–382CrossRefGoogle Scholar
  169. Korte C, Kozur HW (2010) Carbon-isotope stratigraphy across the Permian-Triassic boundary: a review. J Asian Earth Sci 39:215–235CrossRefGoogle Scholar
  170. Korte C, Pande P, Kalia P, Kozur HW, Joachimski MM, Oberhänsli H (2010) Massive volcanism at the Permian-Triassic boundary and its impact on the isotopic composition of the ocean and atmosphere. J Asian Earth Sci 37:293–311CrossRefGoogle Scholar
  171. Kramm U, Wedepohl KH (1991) The isotopic composition of strontium and sulfur in seawater of Late Permian (Zechstein) age. Chem Geol 90:253–262CrossRefGoogle Scholar
  172. Kravchinsky VA (2012) Paleozoic large igneous provinces of northern Eurasia: correlation with mass extinction events. Glob Planet Chang 86:31–36CrossRefGoogle Scholar
  173. Krystyn L, Horacek M, Brandner R, Parcha S (2014) Late Permian tsunamites in Guryul Ravine (Kashmir, India) - revisited and rejected. Geophys Res Abstr 16:EGU2014–EG15312Google Scholar
  174. Kump LR, Pavlov A, Arthur MA (2005) Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology 33(5):397–400CrossRefGoogle Scholar
  175. Kunio K, Yatsu S, Oba M, Gorjan P, Casier J-G, Ikeda M (2013) A forest fire and soil erosion event during the Late Devonian mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol 392:272–280CrossRefGoogle Scholar
  176. Kusznir NJ, Kokhuto A, Stephenson RA (1996) Synrift evolution of the Pripyat Trough: constraints from structural and stratigraphic modeling. Tectonophysics 268:221–236CrossRefGoogle Scholar
  177. Kutty TS, Sengupta DP (1989) The Late Triassic formations of the Pranhita-Godavari valley and their vertebrate faunal succession – a reappraisal. Ind J Earth Sci 16(3–4):189–206Google Scholar
  178. Kutty TS, Jain SL, Roy Chowdhury T (1988) Gondwana sequence of the northern Pranhita-Godavari valley: its stratigraphy and vertebrate faunas. Palaeobotanist 36:263–282Google Scholar
  179. Kutty TS, Chatterjee S, Galton PM, Upchurch P (2007) Basal sauropodomorphs (Dinosauria: Saurischia) from the Lower Jurassic of India: their anatomy and relationships. J Paleontol 81:1218–1240CrossRefGoogle Scholar
  180. Kuzmin MI, Yarmolyuk VV, Kravchinsky VA (2010) Phanerozoic hot spot traces and paleogeographic reconstructions of the Siberian continent based on interaction with the African large low shear velocity province. Earth Sci Rev 102:29–59CrossRefGoogle Scholar
  181. Lahiri TC, Sen MK, Raychaudhuri AK, Acharyya SK (1988) Observations on Cretaceous/Tertiary boundary and reported iridium enrichment, Khasi Hills, Meghalaya. Current Science 57: 1335–1336Google Scholar
  182. Lakshminarayana G, Manikyamba C, Khana TC, Kanakdande P, Raju K (2010) New observations on Rajahmundry Traps of the Krishna-Godavari basin. J Geol Soc India 75:807–819CrossRefGoogle Scholar
  183. LaPorte DF, Holmden C, Patterson WP, Loxton JD, Melchin MJ, Mitchell CE, Finney SC, Sheets HD (2009) Local and global perspectives on carbon and nitrogen cycling during the Hirnantian glaciation. Palaeogeogr Palaeoclimatol Palaeoecol 276:182–195CrossRefGoogle Scholar
  184. Large RR, Halpin JA, Lounejeva E, Danyushevsky LV, Maslennikov VV, Gregory D, Sack PJ, Haines PW, Long JA, Makoundi C, Stepanov AS (2015) Cycles of nutrient trace elements in the Phanerozoic Ocean. Gondwana Res 28:1282–1293CrossRefGoogle Scholar
  185. Lefebvre V, Servais T, François L, Averbuch O (2010) Did a Katian large igneous province trigger the Late Ordovician glaciation? A hypothesis tested with a carbon cycle model. Palaeogeogr Palaeoclimatol Palaeoecol 296:310–319CrossRefGoogle Scholar
  186. Leu M, Baud A, Brosse M, Goudemand N, Vennemann T, Meier M, Bhat G, Bucher H (2014) Earthquake induced soft sediment deformation (seismites): new data from the Early Triassic Guryul Ravine section (Kashmir), vol 19. International Sedimentological Congress, Geneva.  https://doi.org/10.13140/2.1.2848.9600CrossRefGoogle Scholar
  187. Lindström S (2016) Palynofloral patterns of terrestrial ecosystem change during the end Triassic event – a review. Geol Mag 153:223–251CrossRefGoogle Scholar
  188. Luz B, Kolodny Y, Kovach J (1984) Oxygen isotope variations in phosphate of biogenic apatites, III. Conodonts. Earth Planet Sci Lett 69:255–262CrossRefGoogle Scholar
  189. Ma X, Gong Y, Chen D, Racki G, Chen X, Liao W (2015) The Late Devonian Frasnian-Famennian event in South China – patterns and causes of extinctions, sea level changes, and isotope variations. Palaeogeogr Palaeoclimatol Palaeoecol 448:224–244CrossRefGoogle Scholar
  190. MacLeod N (1996) Nature of the Cretaceous–Tertiary (K–T) planktonic foraminiferal record: stratigraphic confidence intervals, Signor–Lipps effect, and patterns of survivorship. In: Macleod N, Keller G (eds) The Cretaceous–Tertiary mass extinction: biotic and environmental changes. W W Norton & Co., New York, pp 85–138Google Scholar
  191. MacLeod N, Keller G (1994) Mass extinction and planktic foraminiferal survivorship across the Cretaceous-Tertiary boundary: a biogeographic test. Paleobiology 20:143–177CrossRefGoogle Scholar
  192. Macleod N, Rawson PF, Forey PL, Banner FT, Boudagher-Fadel MK, Bown PR, Burnett JA, Chambers P, Culver S, Evans SE, Jeffery C, Kaminski MA, Lord AR, Milner AC, Milner AR, Morris N, Owen E, Rosen BR, Smith AB, Taylor PD, Urquhart E, Young JR (1997) The Cretaceous-Tertiary biotic transition. J Geol Soc London 154(2):265–292Google Scholar
  193. Martin EE, Macdougall JD (1995) Sr and Nd isotopes at the Permian1 Triassic boundary: a record of climate change. Chem Geol 125:73–95CrossRefGoogle Scholar
  194. Maxwell WD (1992) Permian and Early Triassic extinction of non-marine tetrapods. Palaeontology 35:571–583Google Scholar
  195. McCune AR, Schaeffer B (1986) Triassic and Jurassic fishes: patterns of diversity. In: Padian K (ed) The beginning of the age of Dinosaurs. Cambridge University Press, Cambridge, UK, pp 171–181Google Scholar
  196. McElwain JC, Beerling DJ, Woodward FI (1999) Fossil plants and global warming at the Triassic–Jurassic boundary. Science 285:1386–1139CrossRefGoogle Scholar
  197. McGhee GR (1996) The Late Devonian mass extinction: the Frasnian/Famennian crisis. Columbia University Press, New York, p 303Google Scholar
  198. McGhee GR Jr (1989) The Frasnian-Famennian extinction event. In: Donovan SK (ed) Mass extinctions: processes and evidence. Columbia University Press, New York, pp 133–151. 266pGoogle Scholar
  199. McGhee GR, Clapham ME, Sheehan PM, Bottjer DJ, Droser ML (2013) A new ecological-severity ranking of major Phanerozoic biodiversity crises. Palaeogeogr Palaeoclimatol Palaeoecol 370:260–270CrossRefGoogle Scholar
  200. McKinney FK, Jackson JBC (1989) Bryozoan evolution. Unwin Hyman, Boston, p 238Google Scholar
  201. McLaren DJ (1970) Presidential address: time, life and boundaries. J Paleontol 48:801–815Google Scholar
  202. McLaren DJ (1982) Frasnian-Famennian extinctions. In: Silver LT, Schultz PH (eds) Geologic implications of large asteroids and comets on the Earth, Geological Society of America Special Paper, vol 190. Geological Society of America, Boulder, CO, pp 477–484. 582pCrossRefGoogle Scholar
  203. McLaren DJ, Goodfellow WD (1990) Geological and biological consequences of giant impacts. Annu Rev Earth Planet Sci 18:123–171CrossRefGoogle Scholar
  204. McLean DM (1985) Deccan Traps mantle degassing in the terminal Cretaceous marine extinctions. Cretac Res 6:235–259CrossRefGoogle Scholar
  205. Mehta DRS (1956) A revision of the geology and coal resources of the Raniganj Coalfield. Mem Geol Surv India 84:1–113Google Scholar
  206. Melchin MJ, Mitchell CE, Holmden C, Štorch P (2013) Environmental changes in the Late Ordovician–Early Silurian: review and new insights from black shales and nitrogen isotopes. Geol Soc Am Bull 125:1635–1670CrossRefGoogle Scholar
  207. Melott AL, Lieberman BS, Laird CM, Martin LD, Medvedev MV, Thomas BC, Cannizzo JK, Gehrels N, Jackman CH (2004) Did a gamma ray burst initiate the late Ordovician mass extinction? Int J Astrobiol 3:55–61CrossRefGoogle Scholar
  208. Miller KG, Kominz MA, Browning JV, Wright JD, Mountain GS, Katz ME, Sugarman PJ, Cramer BS, Christie Blick N, Pekar SF (2005) The Phanerozoic Record of global sea-level change. Science 310:1293–1298CrossRefGoogle Scholar
  209. Molina E, Alegret L, Arenillas I, Arz JA, Gallala N, Hardenbol J, von Salis K, Steurbaut E, Vandenberghe N, Turki DZ (2006) The global boundary stratotype section and point for the base of the Danian Stage (Paleocene, Paleogene, “Tertiary”, Cenozoic) at El Kef, Tunisia – original definition and revision. Episodes 29(4):263–273CrossRefGoogle Scholar
  210. Molina E, Alegret L, Arenillas I, Arz JA, Gallala N, Grajales Nishimura M, Murillo Muñetón G, Zaghbig Turki D (2009) The global boundary stratotype section and point for the base of the Danian Stage (Paleocene, Paleogene, “Tertiary”, Cenozoic): auxiliary sections and correlation. Episodes 32(2):84–95CrossRefGoogle Scholar
  211. Mukhopadhyay SK (1988) Stratigraphy and micropalaeontology of the Late Cretaceous–Early Tertiary marine sequences developed in south west Meghalaya, Eastern India. PhD Thesis, University of Calcutta, Calcutta, India, pp 1–380Google Scholar
  212. Mukhopadhyay SK (2008) Planktonic foraminiferal succession in Late Cretaceous to Early Palaeocene strata in Meghalaya, India. Lethaia 41:71–84CrossRefGoogle Scholar
  213. Mukhopadhyay SK (2009) Convener’s report for 2008 on the progress of work in the IGCP Project 507 on ‘Palaeoclimate in Asia during the Cretaceous: their variations, causes, and biotic and environmental responses’. IGCP India Newsl 29:11–13Google Scholar
  214. Mukhopadhyay SK (2012) Guembelitria (Foraminifera) in the Upper Cretaceous-Lower Paleocene succession of the Langpar Formation, India and its paleoenvironmental implication. J Geol Soc India 79:627–651CrossRefGoogle Scholar
  215. Murata M (1981) Late Permian and Early Triassic conodonts from Guryul Ravine. In: Nakazawa K, Kapoor HM (eds) The Upper Permian and Lower Triassic Faunas of Kashmir, Palaeontolgia Indica New Series, vol 46. Geological Survey of India, Calcutta, pp 179–186Google Scholar
  216. Myrow PM, Fike DA, Malmskog E, Leslie S, Zhang T, Singh BP, Chaubey RS, Prasad SK (2018) Ordovician–Silurian boundary strata of the Indian Himalaya: record of the latest Ordovician Boda Event. Geol Soc Am Bull 131(5–6):881–898Google Scholar
  217. Nagappa Y (1959) Foraminiferal biostratigraphy of the Cretaceous: Eocene succession in the India–Pakistan–Burma region. Micropaleontology 5:145–192CrossRefGoogle Scholar
  218. Nagendra R, Kamala Kannan BV, Sen G, Gilbert H, Bakkiaraj D, Reddy AN, Jaiprakash BC (2011) Sequence surfaces and Paleobathymetric trends in Albian to Maastrichtian sediments of Ariyalur area, Cauvery basin, India. Mar Pet Geol 28:895–905CrossRefGoogle Scholar
  219. Nakazawa K, Kapoor HM, Ishii K, Bando Y, Okimura Y, Tokuoka T (1975) The Upper Permian and the Lower Triassic in Kashmir, India. Mem Fac Sci Kyoto Univ Ser of Geol 41:1–106Google Scholar
  220. Nandi B (1990) Palynostratigraphy of Upper Cretaceous sediments, Meghalaya, northeastern India. Rev Palaeobot Palynol 65:119–129CrossRefGoogle Scholar
  221. Nicholos DJ, Fleming RF (1990) Plant microfossil record of the terminal Cretaceous event in the western United States and Canada. In: Sharpton VL, Ward PD (eds) Global catastrophes in Earth history: an interdisciplinary conference on impacts, volcanism, and mass mortality, Geological Society of America Special Papers, vol 247. Geological Society of America, Boulder, CO, pp 445–455CrossRefGoogle Scholar
  222. Novas FE, Ezcurra MD, Chatterjee S, Kutty TS (2011) New dinosaur species from the Upper Triassic upper Maleri and Lower Dharmaram formations of Central India. Earth Environ Sci Trans R Soc Edinb 101:333–349Google Scholar
  223. Officer CB, Hallam A, Drake CL, Devine JD (1987) Late Cretaceous and paroxysmal Cretaceous/Tertiary extinctions. Nature 326:143–149CrossRefGoogle Scholar
  224. Olsen PE, Shubin NH, Anders MH (1987) New Early Jurassic tetrapod assemblages constrain Triassic–Jurassic tetrapod extinction event. Science 237:1025–1029CrossRefGoogle Scholar
  225. Olsen PE, Kent DV, Sues HD, Koeberl C, Huber H, Montanari A, Rainforth EC, Fowell SJ, Szajna MJ, Hartline BW (2002) Ascent of dinosaurs linked to an iridium anomaly at the Triassic-Jurassic boundary. Science 296:1305–1307CrossRefGoogle Scholar
  226. Over DJ, Conaway CA, Katz DJ, Goodfellow WD, Gregoire DC (1997) Platinum group element enrichments and possible chondritic Ru/Ir ratio across the Frasnian–Famennian boundary, western New York State. Palaeogeogr Palaeoclimatol Palaeoecol 132:399–410CrossRefGoogle Scholar
  227. Palfy J, Mortensen JK, Carter ES, Smith PL, Friedman RM, Tipper HW (2000) Timing the end-Triassic mass extinction: first on land, then in the sea. Geology 28(1):39–42CrossRefGoogle Scholar
  228. Pande PK, Kalia P (1994) Upper Permian and Lower Triassic nodosariid foraminifera from the Kashmir Himalaya, India. Neues Jahrb Geol Palaontol Abh 191:313–329Google Scholar
  229. Pandey J (1990) Cretaceous/Tertiary boundary, iridium anomaly and foraminifer breaks in the Um Sohryngkew river section, Meghalaya. Curr Sci 59:570–575Google Scholar
  230. Payne JL, Turchyn AV, Paytan A, DePaolo DJ, Lehrmann DJ, Yu M, Wei J (2010) Calcium isotope constraints on the end-Permian mass extinction. Proc Natl Acad Sci 107(19):8543–8548Google Scholar
  231. Payne JL, Clapham ME (2012) End Permian mass extinction in the oceans: an ancient analog for the twenty-first century? Annu Rev Earth Planet Sci 40:89–111CrossRefGoogle Scholar
  232. Percival LME, Witt MLI, Mather TA, Hermoso M, Jenkyns HC, Hesselbo SP, Al Suwaidi AH, Storm MS, Xu W, Ruhl M (2015) Globally enhanced mercury deposition during the end-Pliensbachian extinction and Toarcian OAE: a link to the Karoo-Ferrar Large Igneous Province. Earth Planet Sci Lett 428:267–280CrossRefGoogle Scholar
  233. Percival LME, Cohen AS, Davies MK, Dickson AJ, Hesselbo SP, Jenkyns HC, Leng MJ, Mather TA, Storm MS, Xu W (2016) Osmium isotope evidence for two pulses of increased continental weathering linked to Early Jurassic volcanism and climate change. Geology 44(9):759–762CrossRefGoogle Scholar
  234. Peterson SV, Dutton A, Lohmann KC (2016) End Cretaceous extinction in Antarctica linked to both Deccan volcanism and meteorite impact via climate change. Nat Commun 7:12079CrossRefGoogle Scholar
  235. Prasad GVR, Khajuria CK (1995) Implications of the infratrappean and intertrappean biota from the Deccan, India, for the role of volcanism in in Cretaceous-Tertiary boundary extinctions. J Geol Soc Lond 152:289–296CrossRefGoogle Scholar
  236. Prasad GVR, Sahni A (2014) Vertebrate fauna from the Deccan volcanic province: response to volcanic activity. Geol Soc Am Spec Pap 505:1–18Google Scholar
  237. Prasad GVR, Verma O, Flynn JJ, Goswami A (2013) A new Late Cretaceous vertebrate fauna from the Cauvery Basin, South India: implications for Gondwanan paleobiogeography. J Verteb Paleontol 33:1260–1268CrossRefGoogle Scholar
  238. Prasad V, Farooqui A, Murthy S, Sarate OS, Bajpai S (2018) Palynological assemblage from the Deccan volcanic province, Central India: insights into early history of angiosperms and the terminal Cretaceous paleogeography of peninsular India. Cretac Res 86:186–198CrossRefGoogle Scholar
  239. Racki G (1998) The Late Devonian bio-crisis and brachiopods: introductory remarks. Acta Palaeontol Pol 43:135–136Google Scholar
  240. Racki G (1999) The Frasnian–Famennian biotic crisis: how many (if any) bolide impacts? Geol Rundsch 87:617–632CrossRefGoogle Scholar
  241. Racki G, Rakocińsk M, Marynowski L, Wignall PB (2018) Mercury enrichments and the Frasnian-Famennian biotic crisis: a volcanic trigger proved? Geology 46(6):543–546CrossRefGoogle Scholar
  242. Raju DSN, Ravindram CN, Dave A, Jaiprakash BC, Singh J (1991) K/T boundary events in the Cauvery and Krishna-Godavari basins and the age of Deccan volcanism. Geosci J 12:177–190Google Scholar
  243. Raju DSN, Jaiprakash BC, Kumar A, Saxena RK, Dave A, Chatterjee TK, Mishra CM (1995) Age of Deccan volcanism across KTB in Krishna–Godavari Basin: new evidences. J Geol Soc India 45:229–233Google Scholar
  244. Raju DSN, Jaiprakash BC, Kumar A (1996) Palaeoenvironmental set-up and age of basin floor just prior to the spread of Deccan volcanism in the Krishna-Godavari Basin, India. Mem Geol Soc India 37:285–295Google Scholar
  245. Rampino MR, Haggerty BM (1996) Impact crises and mass extinctions: a working hypothesis. Geol Soc Am Spec Pap 307:11–30Google Scholar
  246. Rampino MR, Prokoph A, Adler A (2000) Tempo of the end-Permian event: high resolution cyclostratigraphy at the Permian-Triassic boundary. Geology 28:643–646CrossRefGoogle Scholar
  247. Raup DM (1979) Size of the Permo-Triassic bottleneck and its evolutionary implications. Science 206:217–218CrossRefGoogle Scholar
  248. Raup DM, Sepkoski JJ Jr (1984) Periodicity of extinctions in the geologic past. Proc Natl Acad Sci U S A 81:801–805CrossRefGoogle Scholar
  249. Reichow MK, Saunders AD, White RV, Pringle MS, Al’Mukhamedov AI, Medvedev AI, Kirda NP (2002) 40Ar/39Ar dates from the West Siberian Basin: Siberian flood basalt province doubled. Science 296:1846–1849CrossRefGoogle Scholar
  250. Renne PR, Melosh HJ, Farley KA, Reimold WU, Koeberl C et al (2004) Is Bedout an impact crater? Take 2. Science 306:610–612CrossRefGoogle Scholar
  251. Renne PR, Mundil R, Balco G, Min K, Ludwig KR (2010) Joint determination of 40K decay constants and 40Ar/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology. Geochim Cosmochim Acta 74:5349CrossRefGoogle Scholar
  252. Retallack GJ, Veevers J, Morante R (1996) Global coal gap between Permian-Triassic extinction and Middle Triassic recovery of peat–forming plants. Geol Soc Am Bull 108:195–207CrossRefGoogle Scholar
  253. Rong JY, Harper DA (1988) A global synthesis of the latest Ordovician Hirnantian Brachiopod faunas. Trans R Soc Edinb Earth Sci 79:383–402CrossRefGoogle Scholar
  254. Rossbach TJ, Hall JC (1998) Field guide to the Late Devonian (Frasnian-Famennian) extinction event in the Catskill Delta of Virginia and West Virginia. Paleontol Society and Western Carolina University, Charleston, WV, p 35Google Scholar
  255. Ryskin G (2003) Methane-driven oceanic eruptions and mass extinctions. Geology 31(9):741–744CrossRefGoogle Scholar
  256. Samant B, Mohabey DM (2009) Palynoflora from Deccan volcano–sedimentary sequence (Cretaceous–Paleogene transition) of central India: implication for spatiotemporal correlation. J Biosci 34(5):811–823CrossRefGoogle Scholar
  257. Samant B, Mohabey DM (2014) Deccan volcanic eruptions and their impact on flora: palynological evidence. Geol Soc Am Spec Pap 505:171–191Google Scholar
  258. Sant DA, Mathew G, Khadkikar AS, Gogte V, Gundurao TK (2003) Co-existent cristobalite and iridium at 65Ma, Anjar intertrappeans, Kachchh, western India. Cretac Res 24:105–110CrossRefGoogle Scholar
  259. Sarkar A, Yoshioka H, Ebihara M, Naraoka H (2003) Geochemical and organic carbon isotope studies across the continental Permo-Triassic boundary of Raniganj Basin, eastern India. Palaeogeogr Palaeoclimatol Palaeoecol 191:1–14CrossRefGoogle Scholar
  260. Saunders A, Reichow M (2009) The Siberian Traps and the End-Permian mass extinction: a critical review. Chinese Science Bulletin 54(1):20–37Google Scholar
  261. Saxena RK, Misra CM (1995) Campanian–Maastrichtian nannoplankton biostratigraphy of the Narsapur claystone Formation, Krishna–Godavari Basin, India. J Geol Soc India 45:323–329Google Scholar
  262. Schaller MF, Wright JD, Kent DV (2011) Atmospheric PCO2 perturbations associated with the Central Atlantic Magmatic Province. Science 331:1404–1409CrossRefGoogle Scholar
  263. Schoene B, Guex J, Bartolini A, Schaltegger U, Blackburn TJ (2010) Correlating the end Triassic mass extinction and flood basalt volcanism at the 100 Ka level. Geology 38(5):387–390CrossRefGoogle Scholar
  264. Self S, Blake S, Sharma K, Widdowson M, Sephton S (2008) Sulfur and chlorine in Late Cretaceous Deccan magmas and eruptive gas release. Science 319(5870):1654–1657CrossRefGoogle Scholar
  265. Sepkoski JJ (1981) A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7:36–53CrossRefGoogle Scholar
  266. Sepkoski JJ (1982) Mass extinctions in the Phanerozoic oceans: a review. In: Silver LT, Schultz PH (eds) Geologic implications of large asteroids and comets on the Earth, Geologic Society of America Special Paper, vol 190. Geologic Society of America, Boulder, CO, pp 283–289. 582pCrossRefGoogle Scholar
  267. Sepkoski JJ (1984) A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions. Paleobiology 10:246–267CrossRefGoogle Scholar
  268. Sepkoski JJ (1989) Periodicity in extinction and the problem of catastrophism in the history of life. J Geol Soc Lond 146:7–19CrossRefGoogle Scholar
  269. Sepkoski JJ (1996) Patterns of Phanerozoic extinction: a perspective from global data bases. In: Walliser OH (ed) Global events and event stratigraphy in the Phanerozoic. Springer, Berlin, pp 35–51CrossRefGoogle Scholar
  270. Shah SK, Sinha AK (1974) Stratigraphy and tectonics of the “Tethyan” zone in a part of western Kumaun Himalaya. Himal Geol 14:1–24Google Scholar
  271. Sheehan PM (2001) The late Ordovician mass extinction. Annu Rev Earth Planet Sci 29:331–364CrossRefGoogle Scholar
  272. Shen SZ, Crowley JL, Wang Y, Bowring SA, Erwin DH, Sadler PM, Cao CQ, Rothman DH, Henderson CM, Ramezani J, Zhang H (2011) Calibrating the end-Permian mass extinction. Science 334:1367–1372CrossRefGoogle Scholar
  273. Shen J, Feng Q, Algeo T J, Li C, , Planavsky N J, Zhou L, Zhang M (2016) Two pulses of oceanic environmental disturbance during the Permian–Triassic boundary crisis Earth Planet Sci Lett, 443, pp 139–152CrossRefGoogle Scholar
  274. Shukla PN, Shukla AD, Bhandari N (1997) Geochemical characterisation of the Cretaceous–Tertiary boundary sediments at Anjar, India. Palaeobotanist 46(1,2):127–132Google Scholar
  275. Shukla AD, Bhandari N, Shukla PN (2002) Chemical signatures of the Permian-Triassic transitional environment in Spiti Valley, India. In: Koeberl C, MacLeod KG (eds) Catastrophic events and mass extinctions: impacts and beyond. Geological Society of America, Boulder, CO, pp 445–453Google Scholar
  276. Siljan (2008) Earth Impact Database. University of New Brunswick. Accessed 6 Oct 2018Google Scholar
  277. Singh J, Mahanti S, Singh K (2004) Geology and evaluation of hydrocarbon prospects of Tethyan sediments in Spiti Valley, Spiti and Zanskar, Himachal Pradesh, 19th HimalayaKarakoramTibet Workshop. Himalayan Journal of Sciences, 2(4), Niseko, Japan, p 250Google Scholar
  278. Sinha HN, Trampisch C (2013) Melanosclerites from the Late Ordovician strata of the Shiala Formation, Indian Gondwana. J Asian Earth Sci 75:13–18CrossRefGoogle Scholar
  279. Sinha HN, Verniers J (2016) Discovery of the Chitinozoans Belonechitina Capitata from the Shiala formation of Northeastern Garhwal-Kumaon Tethys Himalaya, Pithoragarh District, Uttarakhand, India. Geosci Front 7(5):859–864CrossRefGoogle Scholar
  280. Sinha HN, Prasad B, Srivastava SS (1998) OrdovicianSilurian acritarch biostratigraphy of the Tethyan Garhwal Himalaya, India. Rev Palaeobot Palynol 103:167–199CrossRefGoogle Scholar
  281. Sinha HN, Vandenbroucke TRA, Verniers J (2011) First Ordovician chtinozoans from Indian Gondwananew evidence from the Shiala Formation. Rev Palaeobot Palynol 167:117–122CrossRefGoogle Scholar
  282. Smith AB, Jeffery CH (1988) Selectivity of extinction among sea urchins at the end of the Cretaceous period. Nature 392(5):69–71Google Scholar
  283. Sole RV, Newman M (2002) Extinctions and biodiversity in the fossil record – Volume Two, The earth system: biological and ecological dimensions of global environment change, Encyclopedia of global environmental change. Wiley, Chichester, pp 297–391Google Scholar
  284. Spicer RA, Collinson ME (2014) Plants and floral change at the Cretaceous-Palaeogene boundary: three decades on. Geol Soc Am Spec Pap 505:117–132Google Scholar
  285. Srikantia SV, Bhargava ON (1998) Geology of Himachal Pradesh. Geological Society of India, Bangalore, p 406Google Scholar
  286. Stearn CW (1987) Effect of the Frasnian–Famennian extinction event on the stromatoporoids. Geology 15:677–679CrossRefGoogle Scholar
  287. Stigall AL (2012) Speciation collapse and invasive species dynamics during the Late Devonian mass extinction. Geol Soc Am Today 22(1):4–9Google Scholar
  288. Subbarao KV, Pathak S (1993) Reversely magnetized flows, Rajahmundry, Andhra Pradesh. J Geol Soc India 41:71–72Google Scholar
  289. Sundaram R, Henderson RA, Ayyasami K, Stilwell J (2001) A lithostratigraphic revision and palaeoenvironmental assessment of the Cretaceous System exposed in the onshore Cauvery Basin, southern India. Cretac Res 22:743–762CrossRefGoogle Scholar
  290. Svensen H, Planke S, Polozov AG, Schmidbauer N, Corfu F, Podladchikov YY, Jamtveit B (2009) Siberian gas venting and the end–Permian environmental crisis. Earth Planet Sci Lett 277:490–500CrossRefGoogle Scholar
  291. Swami NK, Tripathi SK, Laishram R, Dharwadkar A (2017) First record of extinct Paraconularia (Cnidaria, Scyphozoa) from Tethyan sequence (Upper Permian) of Spiti valley, Himachal Himalaya, India. Palaeontol Electron 20(3):1–6Google Scholar
  292. Sweet WC (1973) Late Permian and Early Triassic conodont faunas. In: Logan A, Hills LV (eds) The Permian and Triassic System and their mutual boundary, Canadian Society of Petroleum Geologists Special Publication 2, pp 630–646Google Scholar
  293. Sweet AR, Braman DR, Lerbekmo JF (1990) Palynofloral response to K/T boundary events; a transitory interruption within a dynamic system. In: Sharpton VL, Ward PD (eds) Global catastrophes in earth history, Geological Society of America Special Papers, vol 247. Geological Society of America, Boulder, CO, pp 457–469Google Scholar
  294. Tandon SK, Sood A, Andrews JE, Dennis F (1995) Palaeoenvironment of Dinosaur-bearing Lameta Beds (Maastrichtian), Narmada valley, Central India. Palaeogeogr Palaeoclimatol Palaeoecol 117:153–184CrossRefGoogle Scholar
  295. Tanner LH, Kyte FT, Walker AE (2008) Multiple Ir anomalies in uppermost Triassic to Jurassic-age strata of the Blomidon Formation, Fundy basin, eastern Canada. Earth Planet Sci Lett 274:103–111CrossRefGoogle Scholar
  296. Taylor PD (1993) Bryozoa. In: Benton MJ (ed) The fossil record 2. Chapman & Hall, London, pp 465–489Google Scholar
  297. Teichert C, Kummell B, Kapoor HM (1970) Mixed Permian-Triassic fauna, Guryul Ravine, Kashmir. Science 167:174–175CrossRefGoogle Scholar
  298. Tewari R, Awtar R, Pandita SK, McLoughlin S, Agnihotri D, Pillai SSK, Singh V, Kumar K, Bhat GD (2015) The Permian–Triassic palynological transition in the Guryul Ravine section, Kashmir, India: implications for Tethyan Gondwanan correlations. Earth-Sci Rev 149:53–66CrossRefGoogle Scholar
  299. Thompson JB, Newton CR (1988) Late Devonian mass extinction; episodic climatic cooling or warming? In: McMillen NJ, Embry AF, Glass DJ (eds) Devonian of the World, Memoir 14. Canadian Society of Petroleum Geologists, Calgary, AB, pp 29–34Google Scholar
  300. Tiwari RS, Tripathi A (1992) Marker assemblage zone of spore and pollen species through Gondwana Palaeozoic and Mesozopic sequence in India. Palaeobotanist 40:1904–1236Google Scholar
  301. Twitchett RJ (2007) The Lilliput effect in the aftermath of the end-Permian extinction event. Palaeogeogr Palaeoclimatol Palaeoecol 252:132–144CrossRefGoogle Scholar
  302. Twitchett RJ, Looy CV, Morante R, Visscher H, Wignall PB (2001) Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian mass extinction event. Geology 29:351–354CrossRefGoogle Scholar
  303. Vajda V, McLoughlin S (2007) Extinction and recovery patterns of the vegetation across Cretaceous–Palaeogene boundary – a tool for unravelling the causes of the end Permian mass-extinction. Rev Palaeobot Palynol 144:99–112CrossRefGoogle Scholar
  304. Vajda V, Raine JI, Hollis CJ (2001) Indication of global deforestation at the Cretaceous-Tertiary boundary by New Zealand fern spike. Science 294:1700–1702CrossRefGoogle Scholar
  305. Van de Schootbrugge B, Tremolada F, Rosenthal Y, Bailey TR, Feist Burkhardt S, Brinkhuis H, Pross J, Kent DV, Falkowski PG (2007) End–Triassic calcification crisis and blooms of organic-walled ‘disaster species’. Palaeogeogr Palaeoclimatol Palaeoecol 244:126–141CrossRefGoogle Scholar
  306. Van de Schootbrugge B, Quan TM, Lindström S, Püttmann W, Heunisch C, Pross J, Fiebig J, Petschick R, Röhling HG, Richoz S, Rosenthal Y, Falkowski PG (2009) Floral changes across the Triassic–Jurassic boundary linked to massive flood basalt volcanism. Nat Geosci 2:589–594CrossRefGoogle Scholar
  307. Vandamme D, Courtillot VE (1992) Palaeomagnetic constraints on the structure of the Deccan Traps. Phys Earth Planet Inter 74:241–261CrossRefGoogle Scholar
  308. Vandenbroucke TRA, Emsbo P, Munnecke A, Nuns N, Duponchel L, Lepot K, Quijada M, Paris F, Servais T, Kiessling W (2015) Metal-induced malformations in early Paleozoic plankton are harbingers of mass extinction. Nat Commun 6:7977CrossRefGoogle Scholar
  309. Vannay JC (1993) Geologie des chaines du Haut-Himalaya et du Pir Panjal au Haut-Lahul (NW-Himalaya, Inde): Paleogeographie et tectonique. Mem Geol Univ Lausanne 16:148Google Scholar
  310. Venkatesan TR, Pande K, Ghevariya ZG (1996) 40Ar–39Ar ages of Anjar Traps, Western Deccan Province (India) and its relation to the Cretaceous–Tertiary Boundary events. Curr Sci 70:990–996Google Scholar
  311. Visscher H, Brinkhuis H, Dilcher DL, Elsik WC, Eshet Y, Looy CV, Rampino MR, Traverse A (1996) The terminal Paleozoic fungal event: evidence of terrestrial ecosystem destabilization and collapse. Proc Natl Acad Sci U S A 93:2155–2158CrossRefGoogle Scholar
  312. Von Salis K, Saxena RK (1998) Calcareous nannofossils across the K/T boundary and the age of the Deccan Trap volcanism in southern India. J Geol Soc India 51:183–192Google Scholar
  313. Walliser OH (1996) Global events in the Devonian and Carboniferous. In: Walliser OH (ed) Global events and event stratigraphy in the Phanerozoic. Springer, Berlin, pp 225–250. 333pCrossRefGoogle Scholar
  314. Wang K, Orth CJ, Attrep M, Chatterton BDE, Hou H, Geldsetzer HHJ (1991) Geochemical evidence for a catastrophic biotic event at the Frasnian/Famennian boundary in south China. Geology 19:776–779CrossRefGoogle Scholar
  315. Wang K, Geldsetzer HHJ, Goodfellow WD, Krouse HR (1996) Carbon and sulfur isotope anomalies across the Frasnian-Famennian extinction boundary, Alberta, Canada. Geology 24:187–191CrossRefGoogle Scholar
  316. Ward PD, Botha J, Buick R, De Kock MO, Erwin DH, Garrison GH, Kirschvink JL, Smith R (2005) Abrupt and gradual extinction among Late Permian land vertebrates in the Karoo Basin, South Africa. Science 307:709–714CrossRefGoogle Scholar
  317. Whalen M T, Sliwinski M G, Payne J H, Day J E, Chen D, Da Silva A C (2015) Chemostratigraphy and magnetic susceptibility of the Late Devonian Frasnian–Famennian transition in western Canada and southern China: implications for carbon and nutrient cycling and mass extinction. In Da Silva AC, Whalen MT, Hladil J, Chadimova L, Chen D, Spassov S, Boulvain F, Devleeschouwer X Magnetic susceptibility application: a window onto ancient environments and climatic variations, Geological Society London Special Publication, London 414, pp 37–72Google Scholar
  318. Whalen MT, De Vleeschouwer DM, Payne JH, Day JE, Over DJ, Claeys P (2016) Pattern and timing of the late Devonian biotic crisis in Western Canada: insights from carbon isotopes and astronomical calibration of magnetic susceptibility data. New Adv Devonian Carbonates Outcrop Analogs Reservoirs Chronostratigraphy 107:185–201Google Scholar
  319. White RV (2002) Earth’s biggest ‘whodunnit’: unravelling the clues in the case of the end–Permian mass extinction. Philos Trans R Soc Lond A Math Phys Eng Sci 360:2963–2985CrossRefGoogle Scholar
  320. Wignall PB, Twitchett RJ (2002) Extent, duration and nature of the Permian–Triassic superanoxic event. In: Koeberl C, MacLeod KG (eds) Catastrophic events and mass extinctions: impacts and beyond, Geological Society of America Special Paper, vol 356. Geological Society of America, Boulder, CO, pp 395–413Google Scholar
  321. Wignall PB, Morante R, Newton R (1998) The Permo-Triassic transition in Spitsbergen: 13Corg chemostratigraphy, Fe and S geochemistry, facies, fauna and trace fossils. Geol Mag 135:47–62CrossRefGoogle Scholar
  322. Wignall PB, Newton R, Brookfield ME (2005) Pyrite framboid evidence for oxygen-poor deposition during the Permian–Triassic crisis in Kashmir. Palaeogeogr Palaeoclimatol Palaeoecol 216:183–188CrossRefGoogle Scholar
  323. Williams ME (1994) Catastrophic versus noncatastrophic extinction of the dinosaurs: testing, falsifiability, and the burden of proof. J Paleontol 68:183–190CrossRefGoogle Scholar
  324. Williams JC, Basu AR, Bargava ON, Ahluwalia AD, Hannigan RE (2012) Resolving original signatures from a sea of overprint – the geochemistry of the Gungri Shale (Upper Permian) Spiti Valley India. Chem Geol 324:59–72CrossRefGoogle Scholar
  325. Wilson M, Lyashkevich ZM (1996) Magmatism and the geodynamics of rifting of the Pripyat–Dnieper–Donets rift, East European Platform. Tectonophysics 268:65–81CrossRefGoogle Scholar
  326. Wright CW (With Callomon JH & Howarth MK) (1986) Treatise on invertebrate paleontology. Part L. Mollusca (revised), 4. The Geological Society of America and the University of Kansas, p 362Google Scholar
  327. Xu D, Ma S, Chai Z, Mao X, Sun Y, Zhang Q w, Yang Z (1985) Abundance variation of Iridium anomalies and trace elements at the Permian/Triassic boundary at Shangsi in China. Nature 314:154–156CrossRefGoogle Scholar
  328. Zhou L, Kyte FT (1988) The Permian-Triassic boundary event: a geochemical study of three Chinese sections. Earth Planet Sci Lett 90(4):411–421CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • G. V. R. Prasad
    • 1
  • Varun Parmar
    • 2
  1. 1.Department of Geology, Centre for Advanced StudiesUniversity of DelhiDelhiIndia
  2. 2.Department of GeologyUniversity of JammuJammuIndia

Personalised recommendations