Geodynamics of Gondwanaland

  • Parthasarathi GhoshEmail author
  • Dhurjati P. Sengupta
Part of the Springer Geology book series (SPRINGERGEOL)


Similar lithological characteristics and fossil content of the coal-bearing, Late Paleozoic sedimentary rock strata of central India and the strata of similar age found in a number of different continents of southern hemisphere perpetuated the idea that these landmasses, now separated by oceans, were joined together in the geological past, constituting the supercontinent called Gondwanaland. These observations laid the cornerstones for the concepts of continental drift and plate tectonic theory. Studies of plate movement, supplemented with the paleontological and geochronological lines of evidence, have helped in understanding the chronology and mode of this assembly; connections with the other supercontinent, Laurasia; and the subsequent breakup of Pangea in Jurassic.

The studies of stratigraphy and paleontology of the Indian Gondwana strata have revealed that the accumulation of sediments took place in several discrete basins in the peninsula. The formation of these intercratonic basins and their characteristics are closely linked to the tectonics related of the continental breakup. The sedimentation in the Indian basins commenced from the Late Carboniferous and continued till the later part of the Triassic Period and, in places, even till the Early Jurassic. These few kilometers thick, fossiliferous, mostly continental deposits are an invaluable record of paleoenvironments, biotic evolution, climate change, and paleogeographic configuration, among others.


Gondwana Continental drift India Pangea Stratigraphy Fossil Continental basin 


  1. Acharyya SK (2000) Tectonic setting and nature of the Gondwanic Indian crust. Proc. Vol., Int. seminar, Precambrian crust in eastern and Central India. Geol Surv India Spec Publ 57:1–8Google Scholar
  2. Agarwal RP, Dotiwala SF, Bhoj R (1993) Structural framework of Son–Mahanadi Gondwana basin based on the study of remote sensing data. Gondwana Geol Magazine Special Volume, Birbal Sahni Centre, National Symposium, Gondwana, India. pp 207–217Google Scholar
  3. Anderson JM, Cruickshank ARI (1978) The biostratigraphy of the Permian and the Triassic; part 5, a review of the classification and the distribution of the Permo-Triassic tetrapods. Palaeontol Afr 21:15–44Google Scholar
  4. Anderson JM, Anderson HM (1993) Terrestrial flora and fauna of the Gondwana Triassic. Part I - occurrences: New Mexico Museum of Natural History and Science, Bulletin 3, pp 3–12Google Scholar
  5. Bakshi AK (1986) Critical evaluation of the age of the Deccan trap, India: implications for flood basalt volcanism and faunal extinctions. Geology 15:147–150CrossRefGoogle Scholar
  6. Bandopadhay S (1999) Gondwana vertebrate faunas of India. Proc Indian Natl Sci Acad 65:285–313Google Scholar
  7. Bandyopadhyay S, Sengupta DP (1998) Middle Triassic vertebrates of India. J Afr Earth Sci 29:233–241CrossRefGoogle Scholar
  8. Bandyopadhyay S, Gillette D, Ray S, Sengupta DP (2010) Osteology of Barapasaurus tagorei (Dinosauria: Sauropoda) from the early Jurassic of India. Palaeontology 53(3):533–569CrossRefGoogle Scholar
  9. Bandyopadhyay S (2011) Non-marine Triassic vertebrates of India. In: Calvo JO, Porfiri J, Gonzalez Riga B, Dos Santos D (eds) Paleontog’ıa y DinosauriosdesdeAm’erica Latina: Mendoza. Universidad Nacional de Cuyo, Editorial, Argentina, pp 33–46Google Scholar
  10. Benton MJ (1983) Dinosaur success in the Triassic: a noncompetitive ecological model. Q Rev Biol 58:29–55CrossRefGoogle Scholar
  11. Biswas SK (1999) A review on the evolution of rift basins in India during Gondwana with special reference to western Indian basins and their hydrocarbon prospects. In: Sahni, A., Loyal, R.S. (eds), Gondwana assembly: new issues and perspectives. Proc Ind Nat Sci Acad Spec Issue, pp 261–283Google Scholar
  12. Biswas SK (2003) Regional tectonic framework of the Pranhita-Godavari basin, India. J Asian Earth Sci 21:1–9CrossRefGoogle Scholar
  13. Blackburn TJ, Olsen PE, Bowring SA, McLean NM, Kent DV, Puffer J, McHone G, Rasbury T, Et-Touhami M (2013) Zircon U-Pb geochronology links the end-triassic extinction with the Central Atlantic magmatic province. Science 340(6135):941–945CrossRefGoogle Scholar
  14. Bose MN, Banerji J, Maithy PK (1977) Some fossil plants remains from Ramkola-Tatapani coalfields, Madhyay Pradesh. Plaeobotanist 24(2):108–117Google Scholar
  15. Bose MN, Taylor EL, Taylor TN (1990) Gondwana floras in India and Antarctica – a survey and appraisal. In: Taylor TN, Taylor EL (eds) Antarctic Paleobiology: its role in the reconstruction of Gondwana. Springer, pp 118–148Google Scholar
  16. Casshyap SM, Tewari RC (1991) Depositional model and tectonic evolution of Gondwana basins. In: Venkatachala BS, Maheswari HK (eds), Indian Gondwana. Mem Geol Soc Ind 21: 95– 206Google Scholar
  17. Casshyap SM, Tewari RC, Khan A (1993) Alluvial fan origin of the Bagra formation (Mesozoic Gondwana) and tectono-stratigraphic implications. J Geol Soc India 42:267–279Google Scholar
  18. Chakrabarti BK (2016) Geology of the Himalayan belt: deformation, metamorphism, stratigraphy. Elsevier, AmsterdamGoogle Scholar
  19. Chakraborty C, Ghosh SK, Chakraborty T (2003a) Depositional record of tidal-flat sedimentation in the permian coal measures of Central India: Barakar formation, Mohpani coalfield, Satpura Gondwana Basin. Gondwana Res 6:817–827CrossRefGoogle Scholar
  20. Chakraborty C, Mandal N, Ghosh SK (2003b) Kinematics of the Gondwana basins of peninsular India. Tectonophysics 377:299–324CrossRefGoogle Scholar
  21. Chakraborty T, Sarkar S (2005) Evidence of lacustrine sedimentation in the upper Permian Bijori formation, Satpura Gondwana basin: Palaeogeographic and tectonic implications. J Earth Syst Sci 114:303–323CrossRefGoogle Scholar
  22. Chatterjee GC, Ghosh PK (1970) Tectonic framework of peninsular Gondwanas of India. Rec Geol Surv India 98:1–15Google Scholar
  23. Chatterjee S, Scotese C (2010) The wandering Indian plate and its changing biogeography during the late cretaceous-early tertiary period. In: Bandopadhyay S (ed) New aspects of Mesozoic biodiversity, pp 105–126CrossRefGoogle Scholar
  24. Chaterjee S, Scotese CR, Bajpai S (2017) The restless Indian Plate and its epic voyage from Gondwana to Asia: its tectonics, Paleoclimate and Paleogeographic evolution. The Geological Society of America. Special paper 529: 1–147Google Scholar
  25. Colbert EH (1958) Relationships of the Triassic Maleri fauna. J Palaeontol Soc Ind 3:68–81Google Scholar
  26. Dasgupta P (2005) Facies pattern of the middle Permian barren measures formation, Jharia basin, India: the sedimentary response to basin tectonics. J Earth Syst Sci 114:287–302CrossRefGoogle Scholar
  27. Dasgupta S, Ghosh P (2018) Freshwater carbonates within a late Triassic siliciclastic fluvial system in a Gondwana rift basin: the Maleri formation, India. Sediment Geol 373:254–271CrossRefGoogle Scholar
  28. Dasgupta S, Ghosh P, Gierlowski-Kordesch EH (2017) A discontinuous ephemeral stream transporting mud aggregates in a continental rift basin: the late Triassic Maleri formation, India. J Sediment Res 87:838–865CrossRefGoogle Scholar
  29. Datta PM (1981) The first Jurassic mammal from India. Zool J Linnean Soc 73(4):307–331CrossRefGoogle Scholar
  30. Dickins JM (1996) Problems of a late Palaeozoic glaciation in Australia and subsequent climate in the Permian. Palaeogeog Palaeoclim Palaeoecol 125:185–197CrossRefGoogle Scholar
  31. Du Toit AL (1937) Our Wandering Continents. A Hypothesis of Continental Drifting, Edinburgh & LondonGoogle Scholar
  32. Evans ES, Prasad GVR, Manhas BK (2002) Fossil lizards from the Jurassic Kota formation of India. J Vertebr Paleontol 22(2):299–312CrossRefGoogle Scholar
  33. Fox CS (1931) The Gondwana system and related formations. Mem Geol Surv India 58(iv):1–241Google Scholar
  34. Gaina C, Torsvik TH, van Hinsbergen DJJ, Medvedev S, Werner SC, Labails C (2013) The African Plate: a history of oceanic crust accretion and subduction since the Jurassic. Tectonophysics 604:4–25CrossRefGoogle Scholar
  35. Ghosh P, Sarkar S, Maulik P (2006) Sedimentology of a muddy alluvial deposit: Triassic Denwa formation, India. Sediment Geol 191:3–36CrossRefGoogle Scholar
  36. Ghosh P, Bhattacharya SK, Ghosh P (2005) Atmospheric CO2 during the late Palaeozoic and Mesozoic: estimates from Indian soils. In: Ehleringer JR, Cerling TE, Dearing MD (eds) A history of atmospheric CO2 and its effects on plants, animals and ecosystems. Springer, pp 8–34Google Scholar
  37. Ghosh P, Vasiliev MV, Ghosh P, Sarkar S, Ghosh S, Yamada K, Ueno Y, Yoshida N, Poulson CJ (2016) Tracking the migration of the Indian continent using the carbonate clumped isotope technique on Phanerozoic soil carbonates. Sci Rep 6:22187CrossRefGoogle Scholar
  38. Ghosh SK (2003) First record of marine bivalves from the Talchir formation of the Satpura Gondwana Basin, India: Palaeobiogeographic implications. Gondwana Res 6:312–320CrossRefGoogle Scholar
  39. Ghosh SK, Chakraborty C, Chakraborty T (2004) Combined tide and wave influence on sedimentation of lower Gondwana coal measures of Central India: Barakar formation (Permian), Satpura basin. J Geol Soc Lond 161:117–131CrossRefGoogle Scholar
  40. Goswami S, Gierlowski-Kordesch E, Ghosh P (2018) Sedimentology of the early Jurassic limestone beds of the Kota formation: record of carbonate wetlands in a continental rift basin of India. J Paleontol 59:21–38Google Scholar
  41. Hoffman HJ (1991) Letter: Precambrian time units; geon or geologic unit? Geology 19(9):958–959CrossRefGoogle Scholar
  42. Jain SL (1973) New specimens of lower Jurassic holostean fishes from India. Palaeontology 16(1):149–177Google Scholar
  43. King W (1881) The geology of the Pranhita-Godavari valley. Mem Geol Surv India 18(30):150–311Google Scholar
  44. Kutty TS, Jain SL, Roy Chowdhury T (1987) Gondwana sequence of the northern Pranhita-Godavari valley: its stratigraphy and vertebrate faunas. Paléo 36:214–229Google Scholar
  45. Kutty TS, Sengupta DP (1989) The late Triassic formations of the Pranhita-Godavari valley and their vertebrate faunal succession - a reappraisal. Indian J Earth Sci 16:189–206Google Scholar
  46. Kutty TS, Chatterjee S, Galton P, Upchurch P (2007) Basal sauropodomorph (Dinosauris: Saurischia) from the Lower Jurassic of India: Their anatomy and relationships. J of Paleontology 81(6):1218–1240CrossRefGoogle Scholar
  47. Langer MC (2005) Studies on continental late Triassic tetrapod biochronology. II. The Ischigualastian and a Carnian global correlation. J S Am Earth Sci 19:219–239CrossRefGoogle Scholar
  48. Langer MC, Ribeiro AM, Schultz CL, Ferigolo J (2007) The continental tetrapod–bearing Triassic of south Brazil. In: Lucas SG, Spielmann JA (eds) The global triassic. New Mexico Museum of Natural History and Science Bulletin 41: 201–218Google Scholar
  49. Lucas SG (1998) Global Triassic tetrapod biostratigraphy and biochronology. Palaeogeog Palaeoclim Palaeoecol 143:347–384CrossRefGoogle Scholar
  50. Lucas SG (2010) The Triassic timescale based on nonmarine tetrapod biostratigraphy and biochronology. Geol Soc Lond Spec Publ 334:447–500CrossRefGoogle Scholar
  51. Lucas SG (2015) Age and correlation of late Triassic tetrapod from southern Poland. Ann Soc Geol Pol 85:627–635Google Scholar
  52. Marzoli A, Renne PR, Piccirillo EM, Ernesto M, Bellieni G, De Min A (1999) Extensive 200-million-year-old continental flood basalts of the Central Atlantic Magmatic Province. Science 284(5414):616–618CrossRefGoogle Scholar
  53. Maulik P, Chakraborty C, Ghosh P, Rudra D (2000) Meso and macro scale architecture of the Triassic fluvial succession: Denwa formation of the Satpura Gondwana Basin, M P. J Geol Soc Ind 56:489–504Google Scholar
  54. McHone JG (2000) Non-plume magmatism and rifting during the opening of the Central Atlantic Ocean. Tectonophysics 316:287–296CrossRefGoogle Scholar
  55. Medlicott HB (1872) Note on exploration for coal in the northern region of the Satpura basin. Rec Geol Surv India 5:109–128Google Scholar
  56. Mitra ND (1987) Structure and tectonics of Gondwana basins of peninsular India. In: Singh RM (ed) Coal resources of India. Banaras Hindu Univ, Varanasi, pp 30–41Google Scholar
  57. Mitra ND (1994) Tensile resurgence along fossil sutures: a hypothesis on the evolution of Gondwana basins of peninsular India. Abstracts of Proceedings of 2nd Symposium on Petroliferous basins of India. KDMIPE, DehradunGoogle Scholar
  58. Mukherjee D, Ray S, Chandra S, Pal S, Bandyopadhyay S (2012) Upper Gondwana succession of the Rewa Basin, India: understanding the interrelationship of Lithologic and stratigraphic variables. J Geol Soc Ind 79:563–575CrossRefGoogle Scholar
  59. Mukhopadhyay G, Mukhopadhyay SK, Roychowdhury M, Parui PK (2010) Stratigraphic correlation between different Gondwana basins of India. Jour Geol Soc Ind 76:251–266CrossRefGoogle Scholar
  60. Naqvi SM, Rao D, Narain H (1974) The protocontinental growth of the Indian shield and the antiquity of its rift valleys. Precambrian Res 1:345–398CrossRefGoogle Scholar
  61. Novas FE, Ezcurra MD, Chatterjee S, Kutty TS (2010) New dinosaur species from the upper Triassic upper Maleri and lower Dharmaram formations of Central India. Earth Environ Sci Trans R Soc Edinb 101:333–349Google Scholar
  62. Owen R (1855) Descriptions of the cranium of a labyrinthodont reptile (Brachyops laticeps), from Mangali, Central India. Quart J of the Geol Soc of London 11:37–39CrossRefGoogle Scholar
  63. Pascoe EH (1959) A manual of the geology of India and Burma – II(3). Government of India Press, CalcuttaGoogle Scholar
  64. Raja Rao CS (1983) Coalfields of India Vol – III; Coal resources of Madhya Pradesh and Jammu and Kashmir. Bulletins of Geological Survey of India Series A45Google Scholar
  65. Rajanikanth A (2009) Status of coastal ‘Gondwana’ a floristic perspective. In: Jayappa KS, Narayana AC (eds) Coastal environments: problems and perspectives. I. K. International Publishing House, New Delhi, pp 258–269Google Scholar
  66. Ray S (1999) Some contributions to the lower Gondwana stratigraphy of the Pranhita-Godavari Valley, Deccan, India. J Geol Soc Ind 50(5):633–640Google Scholar
  67. Ray S (2005) Lystrosaurus murrayi (Therapsida, Dicynodontia) from India: taxonomy, relative growth and cranial dimorphism. J Syst Palaeontol 3:203–221CrossRefGoogle Scholar
  68. Ray S, Chakraborty T (2002) Lower Gondwana fluvial succession of the Pench–Kanhan valley, India: stratigraphic architecture and depositional controls. Sediment Geol 151:243–271CrossRefGoogle Scholar
  69. Retallack GJ, Veevers JJ, Morante R (1996) Global coal gap between Permian-Triassic extinction and middle Triassic recovery of peat-forming plants. Bull Geol Soc Am 108(2):195–207CrossRefGoogle Scholar
  70. Robinson PL (1967) The Indian Gondwana formations—a review. First Symposium on Gondwana Stratigraphy, Mar Del Plata, Argentina, UNESCO, Paris 201–268Google Scholar
  71. Robinson PL (1970) The Indian Gondwana formations–a review. I.U.G.S. First International Symposium on Gondwana Stratigraphy, South America 201–268Google Scholar
  72. Rudra DK (1982) Upper Gondwana stratigraphy and sedimentation in the Pranhita-Godavari valley, India. Quart J Geol Min Met Soc Ind 54:56–79Google Scholar
  73. Ruiz-Martínez VC, Torsvik TH, van Hinsbergen DJJ, Gaina C (2012) Earth at 200 ma: global palaeogeography refined from CAMP palaeomagnetic data. Earth Planet Sci Lett 331–2:67–79CrossRefGoogle Scholar
  74. Sengupta DP (1995) Chigutisaurid temnospondyls from the late Triassic of India and a review of the family Chigutisauridae. Palaeontology 38:313–339Google Scholar
  75. Sengupta S, Sengupta DP, Bandyopadhyay S (2016) Stratigraphy of the upper Gondwana formations around Sohagpur of the Satpura Gondwana basin, Central India. J Geol Soc Ind 87:503–519CrossRefGoogle Scholar
  76. Storey BC (1995) The role of mantle plumes in continental breakup: case histories from Gondwanaland. Nature 377:301–308CrossRefGoogle Scholar
  77. Suess E (1885) Das Satilitz der Ende. Brand 1, Wien, LeipzigGoogle Scholar
  78. Sulej T (2007) Osteology, variability, and evolution of metoposaurus, a temnospondyl from the late Triassic of Poland. Acta Palaeontol Pol 64:29–139Google Scholar
  79. Torsvik TH, Cocks LRM (2013) Gondwana from top to base in space and time. Gondwana Res 24:999–1030CrossRefGoogle Scholar
  80. Tripathi C (1969) Fossil labyrinthodonts from the Panchet series of the Indian Gondwanas. Mem Geol Sur Ind 38:1–45Google Scholar
  81. Tripathi C, Satsangi P (1963) Lystrosaurus fauna of Panchet series of Raniganj coal field. In: Memoirs of the geological survey of India, vol 37. Manager of Publications, Civil Lines, Delhi, pp 1–65Google Scholar
  82. Unrug R (1996) The Assembly of Gondwana supercontinent: contrasting histories of East and West Gondwana. 9 Gondwana Symp Hyderabad, India 1: 989-998Google Scholar
  83. Veevers JJ (2006) Updated Gondwana (Permian-cretaceous) earth history of Australia. Gondwana Res 9:231–260CrossRefGoogle Scholar
  84. Veevers JJ, Tewari RC (1995) Gondwana master basin of peninsular India between Tethys and the interior of the Gondwanaland province of Pangea. Mem Geol Soc Am 187:1–73Google Scholar
  85. Venkatachala BS (1986) Palaeobotany in India – Quo vadis? Geophytology 16(1):1–24Google Scholar
  86. Venkatachala BS, Maheswari HK (1988) Indian Gondwana–redefined. 7th International Gondwana Symposium, Sao Paulo, BSIPB, University of Lucknow, India, 539–547Google Scholar
  87. Warren A, Damiani R, Sengupta DP (2009) Unique stereospondyl mandibles from the early Triassic Panchet formation of India and the Arcadia formation of Australia. Patterns and processes in early vertebrate evolution. Sp Palaeontol 81:161–173Google Scholar
  88. Wegener A (1966) The origin of continents and oceans. Dover Publications, New YorkGoogle Scholar
  89. Wernerburg R, Schneider J (1996) The Permian Temnospondyls of India. Sp Palaeontol 52:105–128Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Geological Studies UnitIndian Statistical InstituteKolkataIndia

Personalised recommendations