Advertisement

Oxygenation of Early Atmosphere and Potential Stratigraphic Records from India

  • Joydip Mukhopadhyay
Chapter
  • 108 Downloads
Part of the Springer Geology book series (SPRINGERGEOL)

Abstract

Oxygenation of atmosphere had a profound role in the evolution of life from primitive anoxygenic heterotrophic life forms to oxygenic photoautotrophs and eventually to multicellular organized plant and animal kingdom. Plethora of geological and geochemical evidences particularly the occurrences of pyritiferous- and uraniferous-reduced paleoplacers, distribution of BIF through ages, Fe-depleted reduced paleosols and more importantly the mass-independent multiple sulphur isotope fractionation prior to 2.4 Ga great oxidation event (GOE) collectively suggest an oxygen-deficient atmosphere during the Archean. Recent research from paleosols older than 2.4 Ga and coeval marine sediments using REE-distribution pattern, redox-sensitive trace elements and fractionation of their isotopes indicates more than one attempt of pre-GOE oxygenation. More case studies from well-preserved paleosols and marine sedimentary sinks for trace metals from the Archean would bridge the gap in the record from pre-GOE to GOE oxygenation history. Peninsular India with nearly continuous stratigraphic successions from Paleoarchean to Paleoproterozoic time interval may be potential to study the pre-GOE to GOE transition of the atmosphere.

Keywords

Oxygenation Atmosphere GOE Pre-GOE Paleosol Peninsular India 

Notes

Acknowledgements

The author is thankful to the series editors Profs. S.K. Tandon and Neal S. Gupta for inviting this article. The author acknowledges financial assistance from FRPDF grant from the Presidency University. DST-FIST and UGC-CAS laboratory facility at Department of Geology, Presidency University has been used.

References

  1. Anbar AD, Knoll AH (2002) Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science 297:1137–1142CrossRefGoogle Scholar
  2. Anbar AD, Duan Y, Lyons TW, Arnold GL, Kendall B, Creaser RA, Kaufman AJ, Gordon GW, Scott C, Garvin J, Buick R (2007) A whiff of oxygen before the great oxidation event? Science 317:903–1906CrossRefGoogle Scholar
  3. Bandyopadhyay PC, Eriksson PG, Roberts RJ (2010) A vertic paleosol at the Archean–Proterozoic contact from the Singhbhum–Orissa craton, eastern India. Precambrian Res 177:277–290CrossRefGoogle Scholar
  4. Banerjee DM (1996) A lower proterozoic paleosol at BGC–Aravalli boundary in south-central Rajasthan, India. J Geol Soc India 48:277–288Google Scholar
  5. Barley ME, Bekker A, Krapez B (2005) Late Archean to early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen. Earth Planet Sci Lett 238:156–171CrossRefGoogle Scholar
  6. Bekker AD (2014) Great oxygenation event. In: Amils R. et al. (eds) Encyclopedia of Astrobiology. Springer, Berlin, HeidelbergGoogle Scholar
  7. Bekker A, Holland HD (2012) Oxygen overshoot and recovery during the early Paleoproterozoic. Earth Planet Sci Lett 317–318:295–230CrossRefGoogle Scholar
  8. Bekker A, Holland HD, Wang L, Rumble D, Stein HJ, Hannah JL, Coetzee LL, Beukes NJ (2004) Dating the rise of atmospheric oxygen. Nature 427:117–120CrossRefGoogle Scholar
  9. Berkner LV, Marshall LC (1965) On the origin and rise of oxygen concentration in the Earth’s atmosphere. J Atmos Sci 22:225–261CrossRefGoogle Scholar
  10. Beukes NJ, Dorland H, Gutzmer J, Nedachi M, Ohmoto H (2002) Tropical laterites, life on land, and the history of atmospheric oxygen in the Paleoproterozoic. Geology 30:491–494CrossRefGoogle Scholar
  11. Beukes NJ, Gutzmer J (2008) Origin and paleoenvironmental significance of major iron formations at the Archean-Paleoproterozoic boundary. Rev Economic Geol 15:5–47Google Scholar
  12. Beukes NJ, Klein C (1992) Models for iron-formation deposition. In: Schopf JW, Klein C (eds) The proterozoic biosphere: a multidisciplinary study. University of Cambridge, Cambridge, pp 147–151Google Scholar
  13. Blankenship RE, Hartman H (1998) The origin and evolution of oxygenic photosynthesis. Trends Biochem Sci 23:94–97CrossRefGoogle Scholar
  14. Brocks JJ, Logan GA, Buick R, Summons RE (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285:1033–1036CrossRefGoogle Scholar
  15. Buick R (1992) The antiquity of oxygenic photosynthesis: evidence from stromatolites in sulphate-deficient Archaean lakes. Nature 255:74–77Google Scholar
  16. Buick R, Thornett JR, McNaughton NJ, Smith JB, Barley ME, Savage M (1995) Record of emergent continental crust ~3.5 billion years ago in the Pilbara craton of Australia. Nature 375:574–577CrossRefGoogle Scholar
  17. Byerly GR, Lowe DR, Walsh MM (1986) Stromatolites from the 3,300–3,500-myr Swazi-land Supergroup, Barberton Mountain Land, South Africa. Nature 319:489–491CrossRefGoogle Scholar
  18. Canfield DE (1998) A new model for Proterozoic ocean chemistry. Nature 396:450–453CrossRefGoogle Scholar
  19. Canfield DE (2005) The early history of atmospheric oxygen: homage to Robert M. Garrels. Annu Rev Earth Planet Sci 33:1–36CrossRefGoogle Scholar
  20. Canfield DE, Poulton SW, Narbonne GM (2007) Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science 315:92–95CrossRefGoogle Scholar
  21. Catling DC, Zahnle KJ, McKay CP (2001) Biogenic methane, hydrogen escape, and the irreversible oxidation of early life. Science 293:839–843CrossRefGoogle Scholar
  22. Chadwick B, Vasudev VN, Hegde GV (2000) The Dharwar craton, southern India, interpreted as the result of Late Archean oblique convergence. Precambrian Res 99:91–111CrossRefGoogle Scholar
  23. Clemmey H, Badham N (1982) Oxygen in the Precambrian atmosphere: an evolution of the geological evidence. Geology 10:141–146CrossRefGoogle Scholar
  24. Cloud P (1968) Atmospheric and hydrospheric evolution on the primitive Earth. Science 160:729–736CrossRefGoogle Scholar
  25. Cloud PE Jr (1972) A working model of the primitive Earth. Am J Sci 272:537–548CrossRefGoogle Scholar
  26. Cox G, Lyons T, Mitchell R, Hasterok D, Gard M (2018) Linking the rise of atmospheric oxygen to growth in the continental phosphorus inventory. Earth Planet Sci Lett 489:28–36CrossRefGoogle Scholar
  27. Crowe SA, Døssing LN, Beukes NJ, Bau M, Kruger SJ, Frei R, Canfield DE (2013) Atmospheric oxygenation three billion years ago. Nature 501:535–538CrossRefGoogle Scholar
  28. Des Marais DJ (2000) Evolution: when did photosynthesis emerge on Earth? Science 289:1703–1705Google Scholar
  29. Dimroth E, Kimberley MM (1976) Precambrian atmospheric oxygen: evidence in the sedimentary distributions of carbon, sulfur, uranium, and iron. Can J Earth Sci 13:1161–1185CrossRefGoogle Scholar
  30. Dymek RF, Klein C (1988) Chemistry, petrology and origin of banded iron-formation lithologies from the 3800 Ma Isua supracrustal belt, west Greenland. Precambrian Res 39:247–302CrossRefGoogle Scholar
  31. Farquhar J, Bao HM, Thiemens M (2000) Atmospheric influence of Earth’s earliest sulfur cycle. Science 289:756–758CrossRefGoogle Scholar
  32. Farquhar J, Savarino J, Airieau S, Thiemens MH (2001) Observation of wavelength-sensitive mass-dependent sulfur isotopes effects during SO2 photolysis: implication for the early Earth atmosphere. J Geophys Res 106:32829–32839CrossRefGoogle Scholar
  33. Farquhar J, Wing BA (2003) Multiple sulfur isotopes and the evolution of the atmosphere. Earth Planet Sci Lett 213:1–13CrossRefGoogle Scholar
  34. Farquhar J, Zerkle AL, Bekker A (2011) Geological constraints on the origin of oxygenic photosynthesis. Photosynth Res 107:11–36CrossRefGoogle Scholar
  35. Frei R, Polat A (2013) Chromium isotope fractionation during oxidative weathering—implications from the study of a Paleoproterozoic (ca. 1.9 Ga) paleosol, Schreiber Beach, Ontario, Canada. Precambrian Res 224:434–453CrossRefGoogle Scholar
  36. Garrels RM, Perry EA Jr, Mackenzie FT (1973) Genesis of Precambrian iron-formations and the development of atmospheric oxygen. Econ Geol 68:1173–1179CrossRefGoogle Scholar
  37. Gay AL, Grandstaff DE (1979) Chemistry and mineralogy of Precambrian paleosols at Elliot Lake, Ontario, Canada. Precambrian Res 12:349–373CrossRefGoogle Scholar
  38. Golani PR (1989) Sillimanite—corundum deposits of Sonapahar, Meghalaya, India: a metamorphosed Precambrian paleosol. Precambrian Res 43:175–189CrossRefGoogle Scholar
  39. Grandstaff DE (1974) Microprobe analyses of uranium and thorium in uraninite from the Witwatersrand, South Africa, and Blind River, Ontario, Canada. Trans Geol South Africa 77:291–294Google Scholar
  40. Guo Q, Strauss H, Kaufman AJ, Schröder S, Gutzmer J, Wing B, Baker MA, Bekker A, Kim S-T, Farquhar J (2009) Reconstructing Earth’s surface oxidation across the Archean-Proterozoic transition. Geology 37:399–402CrossRefGoogle Scholar
  41. Hayes JM, Kaplan IR, Wedeking KW (1983) Precambrian organic geochemistry, preservation of the record. In: Schopf JW (ed) Earth’s earliest biosphere: its origin and evolution. Princeton University Press, Princeton, NJ, pp 93–134Google Scholar
  42. Hayes JM, Lambert IB, Strauss H (1992) The sulfur-isotopic record. In: Schopf JW, Klein C (eds) The Proterozoic biosphere: a multidisciplinary study. Cambridge University Press, Cambridge, pp 129–132Google Scholar
  43. Holland HD (1962) Model for the evolution of the Earth’s atmosphere. In: AEJ E, James HL, Leonard BF (eds) Petrologic studies: a volume in honor of A.F. Buddington. Geological Society of America, Boulder, CO, pp 447–477Google Scholar
  44. Holland HD (1994) Early Proterozoic atmospheric change. In: Bengston S (ed) Early life on earth. Columbia University Press, New York, pp 237–244Google Scholar
  45. Holland HD (1999) When did the Earth’s atmosphere become oxic? A reply. Geochem News 100:20–22Google Scholar
  46. Holland HD (2002) Volcanic gases, black smokers, and the great oxidation event. Geochim Cosmochim Acta 66:3811–3826CrossRefGoogle Scholar
  47. Holland HD (2006) The oxygenation of the atmosphere and oceans. Phil Trans R Soc B 361:903–915CrossRefGoogle Scholar
  48. Holland HD, Beukes NJ (1990) A paleoweathering profile from Griqualand West, South Africa: evidence for a dramatic rise in atmospheric oxygen between 2.2 and 1.9 bybp. Am J Sci 290-A:1–34Google Scholar
  49. Johnson IJ, Watanabe Y, Yamaguchi K, Hamasaki H, Ohmoto H (2008) Discovery of the oldest (~3.4 Ga) lateritic paleosols in the Pilbara Craton Western Australia. Geol Soc Am 40:143. Abstracts with ProgramsGoogle Scholar
  50. Karhu JA, Holland HD (1996) Carbon isotopes and the rise of atmospheric oxygen. Geology 24(10):867–870CrossRefGoogle Scholar
  51. Kasting J (2013) What caused the rise of atmospheric O2? Chem Geol 362:13–25CrossRefGoogle Scholar
  52. Kasting JF, Eggler DH, Raeburn SP (1993) Mantle redox evolution and the oxidation state of the Archean atmosphere. J Geol 101:245–257CrossRefGoogle Scholar
  53. Kaufman AJ, Johnston DT, Farquhar J, Masterson A, Lyons TW, Bates S, Anbar AD, Arnold GL, Garvin J, Buick R (2007) Late Archean biospheric oxygenation and atmospheric evolution. Science 317:1900–1903CrossRefGoogle Scholar
  54. Knoll AH (1992) Biological and biogeochemical preludes to the Ediacaran radiation. In: Lipps JH, Signor PW (eds) Origin and early evolution of the Metazoa. Plenum, New York, pp 53–84CrossRefGoogle Scholar
  55. Knoll AH (2003) The geological consequences of evolution. Geobiology 1(1):3–14CrossRefGoogle Scholar
  56. Knoll AH, Bauld J (1989) The evolution of ecological tolerance in prokaryotes. Trans R Soc Edin Earth 80:209–223CrossRefGoogle Scholar
  57. Kump LR, Kasting JF, Barley ME (2000) The rise of atmospheric oxygen and the “upside down”Archean mantle. Geochem Geophys Geosyst 2, https://doi.org/10.1029/2000GC000114CrossRefGoogle Scholar
  58. Kump LR (2008) The rise of atmospheric oxygen. Nature 451:277–278CrossRefGoogle Scholar
  59. Lyons TW, Reinhard CT, Planavsky NJ (2014) The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506:307–315CrossRefGoogle Scholar
  60. Luo G, Ono S, Beukes NJ, Wang DT, Xie S, Summons RE (2016) Rapid oxygenation of Earth’s atmosphere 2.33 billion years ago. Sci Adv 13(2, 5):e1600134.  https://doi.org/10.1126/sciadv.1600134CrossRefGoogle Scholar
  61. Macfarlane AW, Danielson A, Holland HD (1994) Geology and major and trace element chemistry of late Archean weathering profiles in the Fortescue Group, Western Australia: implications for atmospheric PO2. Precambrian Res 65:297–317CrossRefGoogle Scholar
  62. Mohanty SP, Nanda S (2016) Geochemistry of a paleosol horizon at the base of the Sausar Group, central India: implications on atmospheric conditions at the Archean-Paleoproterozoic boundary. Geosci Front 7:759–773CrossRefGoogle Scholar
  63. Mukhopadhyay J (2019) Archean banded iron formations of India. Earth Sci Rev, 102927CrossRefGoogle Scholar
  64. Mukhopadhyay J, Misra B, Chakrabarti K, De S, Ghosh G (2016) Uraniferous paleoplacers of the Mesoarchean Mahagiri Quartzite, Singhbhum craton, India: depositional controls, nature and source of >3.0 Ga detrital uraninites. Ore Geol Rev 72:1290–1306CrossRefGoogle Scholar
  65. Mukhopadhyay J, Crowley QC, Ghosh S, Ghosh G, Chakrabarti K, Misra B, Heron K, Bose S (2014) Oxygenation of the Archean atmosphere: new paleosol constraints from eastern India. Geology 42:923–926CrossRefGoogle Scholar
  66. Mukhopadhyay J, Ghosh G, Zimerman U, Guha S, Mukherjee T (2012) 3.51 Ga bimodal volcanics-BIF-ultramafic succession from Singhbhum Craton: implications for Palaeoarchaean geodynamic processes from the oldest greenstone succession of the Indian subcontinent. Geosci Front 47:284–311Google Scholar
  67. Mukhopadhyay J, Gutzmer J, Beukes NJ, Bhattacharya HN (2008) Geology and genesis of the major banded iron formation-hosted high-grade iron ore deposits of India. SEG Rev 15:291–316Google Scholar
  68. Naqvi SM (2005) Geology and evolution of the Indian plate (from Hadean to Holocene- 4 Ga to 4 Ka). Capital Publishing Company, New Delhi. 450 pGoogle Scholar
  69. Ohmoto H (1996) Evidence in pre-2.2 Ga paleosols for the early evolution of atmospheric oxygen and terrestrial biota. Geology 24:1135–1138CrossRefGoogle Scholar
  70. Ohmoto H (1997) When did the Earth’s atmosphere become oxic? Geochem News 93(12-13):26–27Google Scholar
  71. Ohmoto H (2004) Archean atmosphere, hydrosphere, and biosphere. In: Eriksson P et al (eds) The Precambrian earth: tempos in Precambrian, Development in Precambrian geology, vol 12. Elsevier, Amsterdam, pp 361–388Google Scholar
  72. Ohmoto H, Watanabe Y, Ikemi H, Poulson SR, Taylor BE (2006) Sulphur isotope evidence for an oxic Archaean atmosphere. Nature 442:908–911CrossRefGoogle Scholar
  73. Pandit MK, Helga DW, Chauhan NK (2008) Paleosol at the Archean—Proterozoic contact in NW India revisited: evidence for oxidizing conditions during paleo-weathering? J Earth Syst Sci 117:201–209CrossRefGoogle Scholar
  74. Papineau D, Mojzsis SJ, Schmitt AK (2007) Multiple sulfur isotopes from Paleoproterozoic Huronian interglacial sediments and the rise of atmospheric oxygen. Earth Planet Sci Lett 255:188–212CrossRefGoogle Scholar
  75. Philippot P, Teitler Y, Gérard M, Cartigny P, Muller E, Assayag N, Le Hir G, Fluteau F (2013) Isotopic and mineralogical evidence for atmospheric oxygenation in 2.76 Ga old paleosols. Mineral Mag 77:1965Google Scholar
  76. Planavsky NJ, Asael D, Hofmann A, Reinhard CT, Lalonde SV, Knudsen A, Wang X, Ossa Ossa F, Pecoits E, Smith AJB, Beukes NJ, Bekker A, Johnson TM, Konhauser KO, Lyons TW, Rouxel OJ (2014) Evidence for oxygenic photosynthesis half a billion years before the great oxidation event. Nat Geosci 7:283–286CrossRefGoogle Scholar
  77. Pavlov AA, Kasting JF (2002) Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2:27–41CrossRefGoogle Scholar
  78. Radhakrishna BP, Naqvi SM (1986) Precambrian continental crust of India and its evolution. J Geol 94:145–166CrossRefGoogle Scholar
  79. Rasmussen B, Buick R (1999) Redox state of the Archean atmosphere: evidence from detrital heavy minerals in ca. 3250–2750 Ma sandstones from the Pilbara Craton, Australia. Geology 27:115–118CrossRefGoogle Scholar
  80. Reinhard CT, Raiswell R, Scott C, Anbar AD, Lyons TW (2009) A late Archean sulfidic sea stimulated by early oxidative weathering of the continents. Science 326:713–716CrossRefGoogle Scholar
  81. Roscoe SM (1957) Geology and uranium deposits, Quirke Lake-Elliot Lake, Blind River area, Ontario. Geol Surv Can 56:7Google Scholar
  82. Roscoe SM (1973) The Huronian Supergroup, a Paleoamphibian succession showing evidence of atmospheric evolution. In: Young GM (ed) Huronian stratigraphy and sedimentation. Geological Association of Canada, St. John’s, pp 31–47Google Scholar
  83. Rosing MT (1999) 13C-depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from West Greenland. Science 283:674–676CrossRefGoogle Scholar
  84. Rosing MT, Frei R (2004) U-rich Archaean sea-floor sediments from Greenland: indications of >3700 Ma oxygenic photosynthesis. Earth Planet Sci Lett 217:237–244CrossRefGoogle Scholar
  85. Roy A, Ramachandra HM, Bandopadhyay BK (2001) Supracrustal belts and their significance in the crustal evolution of central India. Geol Sur India Spec Publ 55:361–380Google Scholar
  86. Rye R, Holland HD (1998) Paleosols and the evolution of atmospheric oxygen: a critical review. Am J Sci 298:621–672CrossRefGoogle Scholar
  87. Satkoski AM, Beukes NJ, Weiqiang L, Beard BL (2015) A redox-stratified ocean 3.2 billion years ago. Earth Planetary Sci Lett 430:43–53CrossRefGoogle Scholar
  88. Schidlowski M (1981) Uraniferous constituents of the Witwatersrand conglomerates: ore-microscopic observations and implications for the Witwatersrand metallogeny. U S Geol Surv Prof Pap 1161:N1–N29Google Scholar
  89. Schopf JW (1993) Microfossils of the early Archean apex chert: new evidence of the antiquity of life. Science 260:640–646CrossRefGoogle Scholar
  90. Schopf JW, Packer BM (1987) Early Archean microfossils from Warrawoona Group, Australia. Science 237:70–73CrossRefGoogle Scholar
  91. Shaw GH (2014) Evidence and arguments for methane and ammonia in Earth’s earliest atmosphere and an organic compound–rich early ocean. In: Shaw GH (ed) Earth’s early atmosphere and surface environment, Geological Society of America Special Paper, vol 504. Princeton University Press, Princeton, pp 1–10CrossRefGoogle Scholar
  92. Smith ND, Minter W (1980) Sedimentological controls of gold and uranium in Witwatersrand paleoplacers. Econ Geol 75:1–14CrossRefGoogle Scholar
  93. Sreenivas B, Roy AB, Srinivasan R (2001) Geochemistry of sericite deposits at the base of the Paleoproterozoic Aravalli supergroup, Rajasthan, India: evidence for metamorphosed and metasomatised Precambrian. Paleosol Proc Indian Acad Sci (Earth Planet Sci) 110:39–61Google Scholar
  94. Sreenivas B, Srinivasan R (1994) Identification of paleosols in the Precambrian metapelitic assemblages of Peninsular India—a major element geochemical approach. Curr Sci 67:89–94Google Scholar
  95. Wall HD, Pandit MK, Chauhan NK (2012) Paleosol occurrences along the Archean–Proterozoic contact in the Aravalli craton, NW India. Precambrian Res 216–219:120–131CrossRefGoogle Scholar
  96. Walter MR, Buick R, Dunlop JSR (1980) Stromatolites 3,400–3,500 myr old from the North-Pole area, Western-Australia. Nature 284:443–445CrossRefGoogle Scholar
  97. Williford KH, Van Kranendonk MJ, Ushikubo T, Kozdon R, Valley JW (2011) Constraining atmospheric oxygen and seawater sulfate concentrations during Paleoproterozoic glaciation: in situ sulfur three-isotope microanalysis of pyrite from the Turee Creek Group, Western Australia. Geochim Cosmochim Acta 75:5686–5705CrossRefGoogle Scholar
  98. Yang W, Holland HD (2003) The Hekpoort paleosol profile in strata 1 at Gaborone, Botswana: soil formation during the great oxidation event. Am J Sci 03:187–220CrossRefGoogle Scholar
  99. Zahnle KJ, Catling DC, Claire MW (2013) The rise of oxygen and the hydrogen hourglass. Chem Geol 362:26–34CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Joydip Mukhopadhyay
    • 1
  1. 1.UGC Centre for Advanced Studies, Department of GeologyPresidency UniversityKolkataIndia

Personalised recommendations