Advertisement

Tracking India Within Precambrian Supercontinent Cycles

  • Sarbani Patranabis-Deb
  • Dilip Saha
  • M. Santosh
Chapter
  • 112 Downloads
Part of the Springer Geology book series (SPRINGERGEOL)

Abstract

The term supercontinent generally implies grouping of formerly dispersed continents and/or their fragments in a close packing accounting for about 75% of earth’s landmass in a given interval of geologic time. The assembly and disruption of supercontinents rely on plate tectonic processes, and therefore, much speculation is involved particularly considering the debates surrounding the applicability of differential plate motion, the key to plate tectonics during the early Precambrian. The presence of Precambrian orogenic belts in all major continents is often considered as the marker of ancient collisional or accretionary sutures, which provide us clues to the history of periodic assembly of ancient supercontinents. Testing of any model assembly/breakup depends on precise age data and paleomagnetic pole reconstruction. The record of dispersal of the continents and release of enormous stress lie in extensional geological features, such as rift valleys, regionally extensive flood basalts, granite-rhyolite terrane, anorthosite complexes, mafic dyke swarms, and remnants of ancient mid-oceanic ridges.

Indian shield with extensive Precambrian rock records is known to bear signatures of the past supercontinents in a fragmentary manner. Vast tracts of Precambrian rocks exposed in peninsular India and in the Lesser Himalaya and the Shillong plateau further north and east provide valuable clues to global tectonic reconstructions and the geodynamics of the respective periods. The Indian shield is a mosaic of Archean cratonic nuclei surrounded by Proterozoic orogenic belts, which preserve the records of geologic events since the Paleoarchean/Eoarchean. Here we discuss the sojourn of the Indian plate from the Archean through Proterozoic, in light of available models for supercontinent assembly and breakup in the Precambrian. We also discuss the issues in constraining the configuration, which is mainly due to scanty exposures, lack of reliable paleomagnetic poles from different cratons, and their time of formation or amalgamation. In this chapter, we briefly review Precambrian geology of India to track her participation in the making of the supercontinents through time.

Keywords

Precambrian Supercontinent cycle Orogenic belt Assembly and breakup Indian shield 

Notes

Acknowledgments

The present work emanates from the ongoing research program of the Indian Statistical Institute on Proterozoic Geology. Sincere thanks to Prof. S. K. Tandon and Prof. Neal S. Gupta for inviting us to write the paper for this special volume. We are grateful for the constructive review by Prof. M. Jayananda, which helped us improve this manuscript.

References

  1. Acharyya SK (2005) Geology and tectonics of NE India. J Geophys 26:35–49Google Scholar
  2. Acharyya SK, Roy A (2000) Tectonothermal history of the Central Indian Tectonic Zones and Reactivation of Major faults/shear Zones. J Geol Soc India 55:239–256Google Scholar
  3. Anderson JL, Cullers RL (1999) Paleo- and Mesoproterozoic granite plutonism of Colorado and Wyoming. Rock Mount Geol 34:149–164CrossRefGoogle Scholar
  4. Anderson JL, Morrison J (1992) The role of anorogenic granites in the Proterozoic crustal development of North America. In: Condie KC (ed) Proterozoic crustal evolution. Elsevier, New York, NY, pp 263–299CrossRefGoogle Scholar
  5. Andrew S. Merdith AS, Williams SE, Müller RD, Collins AS (2017) Kinematic constraints on the Rodinia to Gondwana transition. Precambrian Res 299:132–150Google Scholar
  6. Barley ME (1993) Volcanic, sedimentary and tectonic stratigraphic environments of the approximately 3.46 Ga Warrawoona Megasequesnce; a review. Precambrian Res 60:47–67CrossRefGoogle Scholar
  7. Barley ME, Groves DI (1992) Supercontinent cycles and distribution of metal deposits through time. Geology 17:826–829CrossRefGoogle Scholar
  8. Bhowmik SK (2006) Ultra-high temperature metamorphism and its significance in the Central Indian tectonic Zone. Lithos 92:485–505CrossRefGoogle Scholar
  9. Bhowmik SK, Basu SA, Speiring B, Raith MM (2005) Mesoproterozic reworking of Palaeoproterozoic ultrahigh temperature granulites in the Central Indian Tectonic Zone. J Petrol 46:1085–1119CrossRefGoogle Scholar
  10. Bhoumik SK, Bernhardt HJ, Dasgupta S (2010) Grenvillian age high-pressure upper amphibolite-granulite metamorphism in the Aravalli-Delhi Mobile Belt, Northwestern India: New evidence from monazite chemical age and its implication. Precambrian Research 178:168–184CrossRefGoogle Scholar
  11. Bhowmik SK, Wilde SA, Bhandari A, Pal T, Pant NC (2012) Growth of the greater Indian landmass and its assembly in Rodinia: geochronological evidence from the Central Indian Tectonic Zone. Gondw Res 22:54–72CrossRefGoogle Scholar
  12. Bierlein FP, Groves DI, Cawood PA (2009) Metallogeny of accretionary orogens - the connection between lithospheric processes and metal endowment. Ore Geol Rev 36:282–292CrossRefGoogle Scholar
  13. Bleeker W (2003) The late Archean record: a puzzle in ca. 35 pieces. Lithos 71(2):99–134CrossRefGoogle Scholar
  14. Bleeker W, Chamberlain KR, Kamo SL, Hamilton M, Kilian TM, Buchan KL (2008) Kaapvaal, Superior and Wyoming: nearest neighbours in superCraton Superia. Paper Number: 5222. American Geosciences Institute, Alexandria, VAGoogle Scholar
  15. Blewett RS (2002) Archaean tectonic processes: a case for horizontal shortening in the North Pilbara granite-greenstone terrane, Western Australia. Precambrian Res 113:67–120CrossRefGoogle Scholar
  16. Bogdanova SV, Bingen B, Gorbatschev R, Kheraskova TN, Kozlov VI, Puchkov VN, Volozh YA (2008) The East European Craton (Baltica) before and during the assembly of Rodinia. Precambrian Res 160:23–45CrossRefGoogle Scholar
  17. Boger SD, Miller JML (2004) Terminal suturing of Gondwana and the onset of the Ross-delamarian orogeny: the cause and effect of an early Cambrian reconfiguration of plate motions. Earth Planet Sci Lett 219:35–48CrossRefGoogle Scholar
  18. Bond GC, Nickeson PA, Kominz MA (1984) Breakup of a supercontinent between 625 Ma and 555 Ma: new evidence and implications for continental histories. Earth Planet Sci Lett 70:325–345CrossRefGoogle Scholar
  19. Bora S, Kumar S (2015) Geochemistry of biotites and host granitoid plutons from the Proterozoic Mahakoshal Belt, Central India tectonic zone: implication for nature and tectonic setting of magmatism. Int Geol Rev 57:1686–1706CrossRefGoogle Scholar
  20. Bora S, Kumar S, Yi K, Kim N, Lee TH (2013) Geochemistry and U-Pb SHRIMP zircon chronology of granitoids and microgranular enclaves from Jhirgadandi Pluton of Mahakoshal Belt, Central India Tectonic Zone, India. J Asian Earth Sci 70-71:99–114CrossRefGoogle Scholar
  21. Bose S, Dunkley DJ, Dasgupta S, Das K, Arima M (2011) India–Antarctica–Australia–Laurentia connection in the Paleoproterozoic–Mesoproterozoic revisited: evidence from new zircon U–Pb and monazite chemical age data from the Eastern Ghats Belt, India. Bull Geol Soc Am 123:2031–2049CrossRefGoogle Scholar
  22. Bose S, Das K, Kimura K, Hidaka H, Dasgupta A, Ghosh G, Mukhopadhyay J (2016a) Neoarchean tectonothermal imprints in the Rengali Province, Eastern India and their implication on the growth of Singhbhum Craton: evidence from zircon U-Pb SHRIMP data. J Metam Geol 34:743–764CrossRefGoogle Scholar
  23. Bose S, Das K, Torimoto J, Arima M, Dunkley DJ (2016b) Evolution of the Chilka Lake granulite complex, Northern Eastern Ghats Belt, India: first evidence of ~780 Ma decompression of the deep crust and its implication on the India–Antarctica correlation. Lithos 263:161–189CrossRefGoogle Scholar
  24. Bowring SA, Grotzinger JP (1992) Implications of new chronostratigraphy for tectonic evolution of Wopmay orogeny, North West Canadian shield. Am J Sci 292:1–20CrossRefGoogle Scholar
  25. Brookfield ME (1993) Neoproterozoic Laurentia-Australia fit. Geology 21:683–686CrossRefGoogle Scholar
  26. Bradley DC (2011) Secular trends in the geologic record and the supercontinent cycle. Earth Sci Rev 108:16–33CrossRefGoogle Scholar
  27. Brown M (2008) Characteristic thermal regimes of plate tectonics and their metamorphic imprint throughout Earth history: when did earth first adopt a plate tectonics model of behavior? In: Condie KC, Pease V (eds) When did plate tectonics begin on planet earth? GSA special paper, vol 440. Geological Society of America, Boulder, CO, pp 97–128CrossRefGoogle Scholar
  28. Buick IS, Allen C, Pandit M, Rubatto D, Hermann J (2006) The Proterozoic magmatic and metamorphic history of the banded gneissic complex, Central Rajasthan, India: La-ICP-MS U/Pb zircon constraints. Precambrian Res 151:119–142CrossRefGoogle Scholar
  29. Burke KCA, Dewey JF (1973) Plume-generated triple junctions: key indicators in applying plate tectonics to old rocks. J Geol 86:406–433CrossRefGoogle Scholar
  30. Burrett C, Berry R, (2000) Proterozoic Australia-Western United States (AUSWUS) fit between Laurentia and Australia. Geology 28:103–106CrossRefGoogle Scholar
  31. Burrett C, Berry R (2002) A statistical approach to defining Proterozoic crustal provinces and testing continental reconstructions of Australia and Laurentia- SWEAT or AUSWUS? Gondw Res 5:109–122CrossRefGoogle Scholar
  32. Butterworth N, Steinberg D, Müller RD, Williams S, Merdith AS, Hardy S (2016) Tectonic environments of South American porphyry copper magmatism through time revealed by spatiotemporal data mining. Tectonics 35:2847–2862CrossRefGoogle Scholar
  33. Byerly GR, Lowe DR, Wooden JL, Xie X (2002) An Archaean impact layer from the Pilbara and Kaapvaal Cratons. Science 297:1325–1327CrossRefGoogle Scholar
  34. Cawood PA, Pisarevsky SA (2006) Was Baltica right-way-up or upside-down in the Neoproterozoic? J Geol Soc 163:753–759CrossRefGoogle Scholar
  35. Cawood PA, Kröner A, Pisarevsky SA (2006) Precambrian plate tectonics: Criteria and evidence. GSA Today 16:5–11CrossRefGoogle Scholar
  36. Chardon D, Jayananda M, Peucat JJ (2011) Lateral constructional flow of hot orogenic crust: insights from the Neoarchean of South India, geological and geophysical implications for orogenic plateaux. Geochem Geophys Geosyst 12:Q02005.  https://doi.org/10.1029/2010GC003398CrossRefGoogle Scholar
  37. Chatterjee N, Mazumadar AC, Bhattacharya A, Saikia RR (2007) Mesoproterozoic granulites of the Shillong–Meghalaya plateau: evidence of Westward continuation of the Prydz Bay Pan-African suture into Northeastern India. Precambrian Res 152:1–26CrossRefGoogle Scholar
  38. Chatterjee A, Das K, Bose A, Ganguly P, Hidaka H (2017) Zircon U-Pb SHRIMP and monazite EPMA U-Th-total Pb geochronology of granulites of the Western boundary, Eastern Ghats Belt, India: a new possibility for Neoproterozoic exhumation history. In: Pant NC, Dasgupta S (eds) Crustal evolution of India and Antarctica: the supercontinent connection. Geological Society, London, Special Publications, vol 457. Geological Society of London, London, pp 105–140Google Scholar
  39. Chattopadhyay N, Mukhopadhyay D, Sengupta P (2012) Reactivation of basement: example from Anasagar Granite Gneiss Complex, Rajasthan, Western India. In: Mazumder R, Saha D (eds) Palaeoproterozoic of India. Geological Society, London, Special Publications, vol 365. Geological Society of London, London, pp 217–242Google Scholar
  40. Chattopadhyay A, Das K, Hayasaka Y, Sarkar A (2015a) Syn and post-tectonic granite plutonism in the Sausar Fold Belt, Central India: age constraints and tectonic implications. J Asian Earth Sci 107:110–121CrossRefGoogle Scholar
  41. Chattopadhyay S, Upadhyay D, Nanda JK, Mezger K, Pruseth KL, Berndt J (2015b) Proto-India was a part of Rodinia: evidence from Grenville-age suturing of the Eastern Ghats Province with the Paleoarchean Singhbhum Craton. Precambrian Res 266:506–529CrossRefGoogle Scholar
  42. Chaudhuri AK, Deb GK, Patranabis-Deb S, Sarkar S (2012) Paleogeographic and tectonic evolution of the Pranhita-Godavari Valley, Central India: a Stratigraphic perspective. American Journal of Science 312:766–815CrossRefGoogle Scholar
  43. Cheney ES (1996) Sequence stratigraphy and plate tectonic significance of the Transvaal succession of Southern Africa and its equivalent in Western Australia. Precambrian Res 79:3–24CrossRefGoogle Scholar
  44. Chetty TRK (2017) Proterozoic orogens of India. A critical window to Gondwana. Elsevier, Amsterdam, p 426Google Scholar
  45. Chetty TRK, Murthy DSN (1993) Landsat Thematic Mapper data applied to structural studies of the Eastern Ghats Granulite Terrane in part of Andhra Pradesh. J Geol Soc India 42:37–391Google Scholar
  46. Choudhary AK, Gopalan K, Sastry CA (1984) Present status of the geochronology of the Precambrian rocks of Rajasthan. Tectonophysics 105:131–140CrossRefGoogle Scholar
  47. Clifford TN (1968) Radiometric dating and the pre-Silurian geology of Africa. In: Hamilton EI, Farquhar RM (eds) Radiometric dating for geologist. Interscience, London, pp 299–416Google Scholar
  48. Cocks LRM, Torsvik TH (2002) Earth geography from 500 to 400 million years ago: a faunal and palaeomagnetic review. J Geol Soc Lond 159:631–644CrossRefGoogle Scholar
  49. Collins AS, Pisarevsky A (2005) Amalgamating Eastern Gondwana: the evolution of the Circum-Indian Orogens. Earth Sci Rev 71(3):229–270CrossRefGoogle Scholar
  50. Collins AS, Santosh M, Braun I, Clark C (2007) Age and sedimentary provenance of the Southern Granulites, South India: U–Th–Pb SHRIMP secondary ion mass spectrometry. Precambrian Res 155:125–138CrossRefGoogle Scholar
  51. Condie KC (2002) Breakup of Palaeoproterozoic supercontinent. Gondw Res 5:41–43CrossRefGoogle Scholar
  52. Condie KC (2005) TTG and adakites: are they both slab melts? Lithos 80:33–44CrossRefGoogle Scholar
  53. Condie KC, Rosen OM (1994) Laurentia-Siberia connection revisited. Geology 22:168–170CrossRefGoogle Scholar
  54. Condie KC, Bickford ME, Aster RC, Belousova E, Scholl DW (2011) Episodic zircon age, Hf isotopic composition, and the preservation rate of the continental crust. Geol Soc Am Bull 123:951–957CrossRefGoogle Scholar
  55. Dalziel IWD (1991) Pacific margins of Laurentia and East Antarctica–Australia as a conjugate rift pair: evidence and implications for an Eocambrian supercontinent. Geology 19:598–601CrossRefGoogle Scholar
  56. Das K, Yokoyama K, Chakraborty PP, Sarkar A (2009) Basal tuffs and contemporaneity of the Chhattisgarh and Khariar basins based on new dates and geochemistry. J Geol 117:88–102CrossRefGoogle Scholar
  57. Dasgupta S, Sengupta P (2003) Indo-Antarctic correlation: a perspective from the Eastern Ghats Granulite Belt, India. In: Yoshida M, Windley BF, Dasgupta S (eds) Proterozoic East Gondwana: supercontinent assembly and breakup. Geological Society, London, Special Publications, vol 206. Geological Society of London, London, pp 131–143Google Scholar
  58. Dasgupta S, Bose S, Das K (2013) Tectonic evolution of the Eastern Ghats Belt. Precambrian Res 227:247–258CrossRefGoogle Scholar
  59. Dasgupta S, Bose S, Bhoumik SK, Sengupta P (2017) The Eastern Ghats Belt, India, in the context of supercontinent assembly. In: Pant NC, Dasgupta S (eds) Crustal evolution of India and Antarctica: the supercontinent connection. Geological Society, London, Special Publications. Geological Society of London, London, p 457Google Scholar
  60. Davies GF (1992) On the emergence of plate tectonics. Geology 20:963–966CrossRefGoogle Scholar
  61. Davies GF (1999) Dynamic Earth plates, plumes and mantle convection. Cambridge University press, Cambridge. 458 pCrossRefGoogle Scholar
  62. Deb M, Thorpe R, Kristc D (2001) Hindoli Group of rocks in the Eastern fringe of the Aravalli-Delhi orogenic belt – Archean secondary greenstone belt or Proterozoic supracrustals. Gondw Res 5:879–883CrossRefGoogle Scholar
  63. Deshmukh T, Prabhakar N, Bhattacharya A, Madhavan K (2017) Late Paleoproterozoic clockwise PT history in the Mahakoshal Belt, Central Indian Tectonic Zone: implications for Columbia supercontinent assembly. Precambrian Res 298:56–78CrossRefGoogle Scholar
  64. Dewey JF (1969) Structure and sequence in the paratectonic Caledonides. In: Kay M (ed) North Atlantic geology and continental drift. American Association of Petroleum Geologists, Memoir, vol 12. American Association of Petroleum Geologists, Tulsa, OK, pp 309–335Google Scholar
  65. Dewey JF (2007) Origin and evolution of plate tectonics and the continental crust: a tectonic perspective. Geol Soc Am Spec Paper 142:10–17Google Scholar
  66. Dilek Y, Polat A (2008) Suprasubduction zone ophiolites and Archean tectonics. Geology 36:431–432CrossRefGoogle Scholar
  67. Dobmeier CJ, Raith MM (2003) Crustal architecture and evolution of the Eastern Ghats Belt and adjacent regions of India. Geol Soc Lond Spec Publ 206(1):145–168CrossRefGoogle Scholar
  68. Eriksson PG, Catuneanu O, Nelson DR, Mueller WU, Altermann W (2004) Towards a synthesis. In: Eriksson PG, Altermann W, Nelson DR, Mueller WU, Catuneanu O (eds) The Precambrian Earth: tempos and events. Elsevier, Amsterdam, pp 739–769CrossRefGoogle Scholar
  69. Ernst WG (1983) Mineral parageneses in metamorphic rocks exposed along Tailuko Gorge, Central Mountain Range, Taiwan. J Metam Geol 1:305–329CrossRefGoogle Scholar
  70. Evans DAD, Mitchell RN (2011) Assembly and breakup of the core of Paleoproterozoic–Mesoproterozoic supercontinent Nuna. Geology 39:443–446CrossRefGoogle Scholar
  71. Fitzsimons ICW (2003) Proterozoic basement provinces of Southern and Southwestern Australia, and their correlation with Antarctica. In: Proterozoic East Gondwana supercontinent assembly and breakup, vol 206. Geological Society of London, London, pp 93–130Google Scholar
  72. French JE, Heaman LM, Chacko T, Rivard B (2008) 1891–1883 Ma Southern Bastar Craton-Cuddapah mafic igneous events, India: a newly recognized large igneous province. Precambrian Res 160:308–322CrossRefGoogle Scholar
  73. Ghosh SK, Chakravorty S, Bhalla JK, Paul DK, Sarkar A, Bishui PK, Gupta SN (1994) New Rb – Sr isotopic ages and geochemistry of granitoids from Meghalaya and their significance in Middle to late Proterozoic crustal evolution. Indian Miner 48:33–44Google Scholar
  74. Ghosh G, Bose S, Das K, Dasgupta A, Yamamoto T, Hayasaka Y, Chakrabarti K, Mukhopadhyay J (2016) Transpression and juxtaposition of middle crust over upper crust forming a crustal scale flower structure: insight from structural, fabric, and kinematic studies from the Rengali Province, Eastern India. J Struct Geol 83:156–179CrossRefGoogle Scholar
  75. Goswami JN, Mishra S, Wiedenbeck M, Ray SL, Saha AK (1995) 207Pb/206Pb ages from the OMG, the oldest recognized rock unit from Singhbhum–Orissa Iron Ore Craton, E. India. Curr Sci 69:1008–1012Google Scholar
  76. Gower CF, Ryan AB, Rivers T (1990) Mid-Proterozoic Laurentia-Baltica; an overview of its geological evolution and a summary of the contributions made by this volume. In: Gower CF, Ryan AB, Rivers T (eds) Mid-proterozoic Laurentia-Baltica. Geological Association of Canada Paper, vol 38. Geological Association of Canada, St. John’s, NL, pp 1–20Google Scholar
  77. Guitreau M, Mukusa SB, Loudin L, Krishnan S (2017) New constraints on early formation of Western Dharwar Craton (India) from igneous zircon U-Pb and Lu-Hf isotopes. Precambrian Res 302:33–49CrossRefGoogle Scholar
  78. Gupta BC (1934) The Geology of Central Mewar. Geol SurvIndia Mem 65:107–168Google Scholar
  79. Gupta A (2004) A manual of the geology of India, Vol. I: Precambrian, Part IV: Northern and northwestern part of the Peninsula. Geological Survey of India Special Publication. Geological Survey of India, Kolkata, p 77Google Scholar
  80. Halverson GP, Dudás FÖ, Maloof AC, Bowring SA (2007) Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater. Palaeogeogra Palaeoclimatol Palaeoecol 256(3):103–129CrossRefGoogle Scholar
  81. Halverson GP, Hurtgen MT, Porter SM, Collins AS (2009) Neoproterozoic-Cambrian biogeochemical evolution. In: Gaucher C, Sial AN, Halverson GP, Frimmel HE (eds) Neoproterozoic-Cambrian tectonics, global change and evolution: a focus on Southwestern Gondwana. Developments in Precambrian geology, vol 16. Elsevier, Amsterdam, pp 351–365CrossRefGoogle Scholar
  82. Hamilton WB (2007) Driving mechanism and 3-D circulation of plate tectonics. Geol Soc Am Spec Paper 433:1–25Google Scholar
  83. Hamilton WB (2011) Plate tectonics began in Neoproterozoic time, and plumes from deep mantle have never operated. Lithos 123:1–20CrossRefGoogle Scholar
  84. Hardie LA (1996) Secular variation in seawater chemistry: an explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 my. Geology 24(3):279–283CrossRefGoogle Scholar
  85. Harris LB (1993) Correlations of tectonothermal events between Central Indian Tectonic Zone and the Albany Mobile Belt of Western Australia. In: Findlay RH, Unrug R, Banks MR, Veveers JJ (eds) Gondwana Eight: assembly, evolution and dispersal. A.A. Balkema, Rotterdam, pp 165–180Google Scholar
  86. Hashizume K, Pinti DL, Orberger B, Cloquet C, Jayananda M (2016) A biological switch at the ocean surface as a cause of laminations in a Precambrian Iron Formation. Earth Planet Sci Lett 446:27–36CrossRefGoogle Scholar
  87. Hawkesworth CJ, Dhuime B, Pietranik AB, Cawood PA, Kemp AIS, Storey CD (2010) The generation and evolution of the continental crust. J Geol Soc London 167:229–248CrossRefGoogle Scholar
  88. Henderson B, Collins AS, Payne J, Forbes C, Saha D (2014) Geologically constraining India in Columbia: the age, isotopic provenance and geochemistry of the protoliths of the Ongole Domain, Southern Eastern Ghats, India. Gondw Res 26(3):888–906CrossRefGoogle Scholar
  89. Heron AM (1953) Geology of Central Rajasthan, Memoir, vol 79. Geological Survey of India, Kolkata. 339 pGoogle Scholar
  90. Hess HH (1962) History of ocean basins. In: Engel AEJ, James HL, Leonard BF (eds) Petrologic studies-a volume in honor of AF Buddington. Geological Society of America, New York, NY, pp 599–620Google Scholar
  91. Hoffman PF (1991) Did the breakout of Laurentia turn Gondwanaland inside out? Science 252:1409–1412CrossRefGoogle Scholar
  92. Hoffman PF (1997) Tectonic genealogy of North America. In: van der Pluijm BA, Marshak S (eds) Earth structure: an introduction to structural geology and tectonics. McGraw-Hill, New York, NY, pp 459–464Google Scholar
  93. Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP (1998) The Neoproterozoic snowball earth. Science 281:1342–1346CrossRefGoogle Scholar
  94. Holland TH (1909) The Imperial Gazetteer of India: the Indian Empire Volume 1 (Descriptive). Clarendon Press, Oxford, pp 50–103Google Scholar
  95. Hou GT, Santosh M, Qian XL, Lister S, Li JH (2008) Configuration of the Late Paleoproterozoic supercontinent Columbia: insights from radiating mafic dyke swarms. Gondw Res 14:395–409CrossRefGoogle Scholar
  96. Ishwar-Kumar C, Windley BF, Horie K, Kato T, Hokada T, Itaya T, Yagi K (2013) A Rodinian suture in Western India: new insights on India-Madagascar correlations. Precambrian Res 236:227–251CrossRefGoogle Scholar
  97. James V. Jones JV, Daniel CG, Doe MF (2015) Tectonic and sedimentary linkages between the Belt-Purcell basin and southwestern Laurentia during the Mesoproterozoic, ca. 1.60–1.40 Ga. Lithosphere 7:465–472CrossRefGoogle Scholar
  98. Jayananda M, Moyen JF, Martin H, Peucat JJ, Auvray B, Mahabaleswar B (2000) Late Archaean (2550-2520 Ma) juvenile magmatism in the Eastern Dharwar Craton, Southern India: constraints from geochronology, Nd–Sr isotopes and whole rock geochemistry. Precambrian Res 99:225–254CrossRefGoogle Scholar
  99. Jayananda M, Kano T, Peucat JJ, Channabasappa S (2008) 3.35 Ga komatiite volcanism in the Western Dharwar Craton, Southern India: constraints from Nd isotopes and whole rock geochemistry. Precambrian Res 162:160–179CrossRefGoogle Scholar
  100. Jayananda M, Peucat J-J, Chardon D, Krishna Rao B, Corfu F (2013) Neoarchean greenstone volcanism, Dharwar Craton, Southern India: constraints from SIMS zircon geochronology and Nd isotopes. Precambrian Res 227:55–76CrossRefGoogle Scholar
  101. Jayananda M, Chardon D, Peucat J-J, Fanning CM (2015) Paleo- to Mesoarchean TTG accretion and continental growth, Western Dharwar Craton, Southern India: SHRIMP U-Pb zircon geochronology, whole-rock geochemistry and Nd-Sr isotopes. Precambrian Res 268:295–322CrossRefGoogle Scholar
  102. Jayananda M, Duraiswami RA, Aadhiseshan KR, Gireesh RV, Prabhakar BC, Kafo K-u, Tushipokla, Namratha R (2016) Physical volcanology and geochemistry of Palaeoarchaean komatiite lava flows from the Western Dharwar Craton, Southern India: implications for Archaean mantle evolution and crustal growth. Int Geol Rev 58:1569–1595CrossRefGoogle Scholar
  103. Jayananda M, Santosh M, Aadhiseshan KR (2018) Formation of Archean (3600–2500 Ma) continental crust in the Dharwar Craton, Southern India. Earth Sci Rev 181:12–42CrossRefGoogle Scholar
  104. Kaila KL, Roy Chowdhury K, Reddy PR, Krishna VG, Narain H, Subboti SI, Sollogub VB, Chekunov AV, Kharetcko GE, Lazarenko MA, Ilchenko TV (1979) Crustal structure along Kavali-Udipi profile in the Indian Peninsular shield from Deep Seismic Soundings. J Geol Soc India 20:307–333Google Scholar
  105. Kailasam LN (1976) Geophysical studies of the major sedimentary basins of the Indian Craton, their deep structural features and evolution. In: Bott MHP (ed) Sedimentary basins of continental margins and cratons. Tectonophysics, vol 36. Elsevier, Amsterdam, pp 225–245CrossRefGoogle Scholar
  106. Karlstrom KE, Harlan SS, Williams ML, McLelland J, Geissman JW (1999) Refining Rodinia: geologic evidence for the Australia–Western U.S. connection in the Proterozoic. GSA Today 9:1–7Google Scholar
  107. Kirschvink JL (1992) Late Proterozoic low-latitude global glaciation: the snowball Earth. In: Schopf JW, Klein C (eds) The proterozoic biosphere. Cambridge University Press, Cambridge, pp 51–52Google Scholar
  108. Kinematic constraints on the Rodinia to Gondwana transition Andrew S. Merdith AS, Williams SE, Müller RD, Collins AS (2017) Precambrian Res 299:132–150Google Scholar
  109. de Kock MO, Evans DAD, Beukes NJ (2009) Validating the existence of Vaalbara in the Neoarchean. Precambrian Res 174(1):145–154CrossRefGoogle Scholar
  110. Korhonen FJ, Clarke C, Brown M, Bhattacharya S, Taylor R (2013) How long-lived is ultrahigh temperature (UHT) metamorphism? Constraints from zircon and monazite geochronology in the Eastern Ghats orogenic belt, India. Precambrian Res 234:322–350CrossRefGoogle Scholar
  111. Kumar A, Bhaskar Rao YJ, Sivaraman TV, Gopalan K (1996) Sm-Nd ages of Archaean metavolcanic of the Dharwar craton, South India. Precambrian Res 80:206–215CrossRefGoogle Scholar
  112. Kröner A (1981) Precambrian plate tectonics. In: Kröner A (ed) Precambrian plate tectonics. Elsevier, AmsterdamGoogle Scholar
  113. Kroner A, Santosh M, Hegner E, Shaji E, Geng H, Xie J, Wong H, Wang Y, Shan DK, Liu D, Sun M, Nanda-Kumar V (2015) Palaeoproterozoic ancestry of Pan-African high-grade granitoids in Southernmost India: implications for Gondwana reconstructions. Gondw Res 27:1–37CrossRefGoogle Scholar
  114. Lancaster PJ, Dey S, Storey CD, Mitra AM, Bhunia RK (2015) Contrasting crustal evolution processes in the Dharwar craton: Insights from detrital zircon U–Pb and Hf isotopes. Gondw Res 28:1361–1372CrossRefGoogle Scholar
  115. Li ZX, Bogdanova SV, Collins AS, Davidson A, De Waele B, Ernst RE, Fitzsimons ICW, Fuck RA, Gladkochub DP, Jacobs J, Karlstrom KE, Lu S, Natapov LM, Pease V, Pisarevsky SA, Thrane K, Vernikovsky V (2008) Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Res 160(1):179–210CrossRefGoogle Scholar
  116. Mahapatro SN, Pant NC, Bhowmik SK, Tripathy AK, Nanda JK (2012) Archaean granulite facies metamorphism at the Singhbhum Craton-Eastern Ghats Mobile Belt interface: implication for the Ur supercontinent assembly. Geol J 47:312–333CrossRefGoogle Scholar
  117. Malone SJ, Meert JG, Banerjee DM, Pandit MK, E. Tamrat E, Kamenov GD, Pradhan VR, Sohl LE (2008) Paleomagnetism and detrital zircon geochronology of the upper Vindhyan sequence of Son Valley, Rajasathan, India: a c. 1000 Ma closure age for the Purana basins. Precambrian Res 164:137–159Google Scholar
  118. Maibam B, Gerdes A, Goswami JN (2016) U-Pb and Hf isotope records in detrital and magmatic zircon from Eastern and Western Dharwar Craton, Southern India: evidence for coeval Archaean crustal evolution. Precambrian Res 275:496–512CrossRefGoogle Scholar
  119. Manikyamba C, Ganguly S, Santosh M, Subramanyam KSV (2017) Volcano-sedimentary and metallogenic records of the Dharwar greenstone terranes, India: Window to Archean plate tectonics, continent growth, and mineral endowment. Gondw Res 50:38–66CrossRefGoogle Scholar
  120. Mazumder R, Bose PK, Sarkar S (2000) A commentary on the tectono-sedimentary record of the pre-2.0 Ga continental growth of India vis-a-vis a possible pre-Gondwana Afro-Indian supercontinent. J Afr Earth Sc 30:201–217CrossRefGoogle Scholar
  121. Mazumder R, Eriksson PG, De S, Bumby AJ, Lenhardt N (2012) Palaeoproterozoic sedimentation on the Singhbhum Craton: global context and comparison with Kaapvaal. In: Mazumder R, Saha D (eds) Paleoproterozoic of India. Geological Society, London, Special Publications, vol 365. Geological Society of London, London, pp 49–74Google Scholar
  122. McMenamin MAS, McMenamin DLS (1990) The emergence of animals: the Cambrian breakthrough. Columbia University Press, New York, NY, p 217CrossRefGoogle Scholar
  123. Meert JG (2001) Gondwana and refining Rodinia: a paleomagnetic perspective. Gondw Res 4:279–288CrossRefGoogle Scholar
  124. Meert JG (2002) Paleomagnetic evidence for a Paleo-Mesoproterozoic supercontinent, Columbia. Gondw Res 5:207–215CrossRefGoogle Scholar
  125. Meert JG (2003) A synopsis of events related to the assembly of Eastern Gondwana. Tectonophysics 362:1–40CrossRefGoogle Scholar
  126. Meert JG (2012) What’s in a name? The Columbia (Paleopangaea/Nuna) supercontinent. Gondw Res 21:987–993CrossRefGoogle Scholar
  127. Meert JG, Stuckey W (2002) Revisiting the paleomagnetism of the 1.476 Ga St. Francois Mountains igneous province, Missouri. Tectonics 21:1007CrossRefGoogle Scholar
  128. Meert JG, Lieberman BS (2004) A palaeomagnetic and palaeobiogeographical perspective on latest Neoproterozoic and early Cambrian tectonic events. J Geol Soc London 161(3):477–487CrossRefGoogle Scholar
  129. Meert JG, Santosh M (2017) The Columbia supercontinent revisited. Gondw Res 50:67–83CrossRefGoogle Scholar
  130. Meert JG, Torsvik T (2003) The making and unmaking of a supercontinent: Rodinia revisited. Tectonophysics 375(1):261–288CrossRefGoogle Scholar
  131. Merdith AS, Collins, A.S., Williams, S.E., Pisarevsky, S., Foden, J.F., Archibald, D.A., Blades, M.L., Alessio BL, Armistead S, Plavsa D, Clark C, Müller RD (2017) A full-plate global reconstruction of the Neoproterozoic. Gondw Res 50CrossRefGoogle Scholar
  132. Meert JG, Pandit MK, Pradhan VR, Banks J, Stroud M, Newstead B, Gifford J (2010) Precambrian crustal evolution of Peninsular India: a 3.0 billion year odyssey. J Asian Earth Sci 39:483–515CrossRefGoogle Scholar
  133. Meyer C (1988) Ore deposits as guides to geologic history of the Earth. Annu Rev Earth Planet Sci 16:147CrossRefGoogle Scholar
  134. Mitra SK, Mitra SC (2001) Tectonic setting of the Precambrian of Northeast India (Meghalaya plateau) and age of the Shillong Group of rocks. In: Saxena, M. B. L. (ed.) Recent Advances in the Field of Earth Sciences and Their Implications in National Development. Geological Survey of India, Special Publications 64:653–658Google Scholar
  135. Misra S, Gupta S (2014) Superposed deformation and inherited structures in an ancient dilational step-over zone: post-mortem of the Rengali Province, India. J Struct Geol 59:1–17CrossRefGoogle Scholar
  136. Moorbath S, Taylor PN (1988) Early Precambrian crustal evolution in Eastern India: ages of the Singhbhum Granite and included remnants of older gneiss. J Geol Soc India 31:82–84Google Scholar
  137. Moores EM (1991) Southwest US–East Antarctica (SWEAT) connection: a hypothesis. Geology 19:425–428CrossRefGoogle Scholar
  138. Mukhopadhyay D, Bhattacharyya T, Chattopadhyay N, Lopez R, Tobisch OT (2000) Anasagar gneiss: a folded granitoid in the Proterozoic South Delhi fold belt, Central Rajasthan. Proc Indian Acad Sci (Earth Planet Sci) 109:21–37Google Scholar
  139. Mukhopadhyay J, Beukes NJ, Armstrong RA, Zimmermann U, Ghosh G, Medda RA (2008) Dating the oldest Greenstone in India: a 3.51 Ga precise U–Pb SHRIMP Zircon Age for Dacitic Lava of the Southern Iron Ore Group, Singhbhum Craton. J Geol 116:449–461CrossRefGoogle Scholar
  140. Naganjaneyulu K, Santosh M (2010) The Central India Tectonic Zone: a geophysical perspective on continental amalgamation along a Mesoproterozoic suture. Gondw Res:547–564CrossRefGoogle Scholar
  141. Naha K, Srinivasan R, Jayaram S (1991) Sedimentational, structural and migmatitic history of the Archaean Dharwar tectonic province, Southern India. Proc Indian Acad Sci (Earth Planet Sci) 100:413Google Scholar
  142. Nance RD, Murphy JB (2013) Origins of the supercontinent cycle. Geosci Front 4(4):439–448CrossRefGoogle Scholar
  143. Nance R, Murphy J, Santosh M (2014) The supercontinent cycle: a retrospective essay. Gondw Res 25:4–29CrossRefGoogle Scholar
  144. Nutman AP, Chadwick B, Ramakrishnan M, Viswanatha MN (1992) SHRIMP U–Pb ages of detrital zircon in Sargur supracrustal rocks in Western Karnataka. South India J Geol Soc India 39:367–374Google Scholar
  145. Nutman AP, Chadwick B, Krishna Rao B, Vasudev VN (1996) SHRIMP U–Pb zircon ages of acid volcanic rocks in the Chitradurga and Sandur Groups and granites adjacent to Sandur schist belt. J Geol Soc India 47:153–161Google Scholar
  146. Osborne I, Sherlock S, Anand M, Argles T (2011) New Ar-Ar ages of southern Indian kimberlites and a lamproite and their geochemical evolution. Precambrian Res 189:91–103CrossRefGoogle Scholar
  147. Patranabis-Deb S, Majumder T, Khan S (2018) Lifestyles of the Palaeoproterozoic stromatolite builders in the Vempalle Sea, Cuddapah Basin, India. J Asian Earth Sci 157:360–370CrossRefGoogle Scholar
  148. Pehrsson SJ, Eglington BM, Evans DAD, Huston D, Reddy SM (2016) Metallogeny and its link to orogenic style during the Nuna supercontinent cycle. In: Li ZX, Evans DAD, Murphy JB (eds) Supercontinent cycles through earth history. Geological Society, London, Special Publications, vol 424. Geological Society of London, London, pp 83–94Google Scholar
  149. Peucat JJ, Bouhallier H, Fanning CM, Jayananda M (1995) Age of Holenarsipur schist belt, relationships with the surrounding gneisses (Karnataka, south India). J Geol 103:701–710Google Scholar
  150. Peucat JJ, Jayananda M, Chardon D, Capdevila R, Fanning Marc C, Paquette JL (2013) The lower crust of Dharwar craton, south India: patchwork of Archean granulitic domains. Precambrian Res 227:4–29Google Scholar
  151. Pisarevsky SA, Gladkochub DP, Konstantinov KM, Mazukabzov AM, Stanevich AM, Murphy JB, Tait JA, Donskaya TV, Konstantinov IK (2013) Paleomagnetism of Cryogenian Kitoi mafic dykes in South Siberia: implications for Neoproterozoic paleogeography. Precambrian Res 231:372–382CrossRefGoogle Scholar
  152. Powell CM, Li ZX, McElhinny MW, Meert JG, Park JK (1993) Paleomagnetic constraints on timing of the Neoproterozoic breakup of Rodinia and the Cambrian formation of Gondwana. Geology 21(10):889–892CrossRefGoogle Scholar
  153. Powell CM, Dalziel IWD, Li ZX, McElhinny MW (1995) Did Pannotia, the latest Neoproterozoic Southern supercontinent, really exist? Eos (Transactions, American Geophysical Union). Fall Meet 76:172Google Scholar
  154. Qureshy MN, Hinze WJ (1989) Regional geophysical lineaments: their tectonic and economic significance. J Geol Soc India 34:124Google Scholar
  155. Radhakrishna BP, Naqvi SM (1986) Precambrian continental crust of India and its evolution. J Geol 94:145–166CrossRefGoogle Scholar
  156. Radhakrishna BP, Vaidyanadhan R (1997) Geology of Karnataka, 2nd edn. Geological Society of India, Bangalore. 553 pGoogle Scholar
  157. Ramakrishna M, Vaidyanadhan R (2008) Geology of India, vol I. Geological Society of India, Bangalore, p 556Google Scholar
  158. Ray JS (2006) Age of the Vindhyan Supergroup: a review of recent findings. J Earth Syst Sci 115:149–160CrossRefGoogle Scholar
  159. Ray JS, Martin MW, Veizer J, Bowring SA (2002) U-Pb zircon dating and Sr isotope systematic of the Vindhyan Supergroup, India. Geology 30:131–134CrossRefGoogle Scholar
  160. Reddy S, Clarke C, Mazumder R (2009) Temporal constraints on the evolution of the Singbhum Crustal Province from U–Pb SHRIMP data. In: Saha D, Mazumder R (eds) Abstract volume. International Conference on Paleoproterozoic Supercontinents and Global Evolution. IAGR Confernce Series, vol 9. IAGR, Beijing, pp 17–18Google Scholar
  161. Rogers JJW (1993) India and Ur. J Geol Soc India 42:217–222Google Scholar
  162. Rogers JJW (1996) A history of continents in the past three billion years. J Geol 104:91–107CrossRefGoogle Scholar
  163. Rogers JJW, Santosh M (2002) Configuration of Columbia, a Mesoproterozoic supercontinent. Gondw Res 5:5–22CrossRefGoogle Scholar
  164. Rogers JJW, Santosh M (2004) Continents and supercontinents. Oxford University Press, Oxford. 289 pGoogle Scholar
  165. Roy AB, Jakhar SR (2002) Geology of Rajasthan (Northwestern India), Precambrian to recent. Scientific Publisher, Jodhpur, p 421Google Scholar
  166. Roy A, Ramachandra HM, Bandopadhyay BK (2000) Supracrustal belts and their significance in the crustal evolution of Central India. Geol Surv India Spec Publ 55:361–380Google Scholar
  167. Roy A, Devaranjan MK, Hanuma Prasad M (2002) Ductile shearing and syntectonic granite emplacement along the Southern margin of the Palaeoproterozoic Mahakoshal supracrustal belt of Central India. Gondw Res 5:489–500CrossRefGoogle Scholar
  168. Runcorn SK (1962) Convection currents in the Earth’s mantle. Nature 195:1248–1249CrossRefGoogle Scholar
  169. Saha AK (1994) Crustal Evolution of Singhbhum–North Orissa, Eastern India. Geological Society of India, Memoir, vol 27. Geological Society of India, BangaloreGoogle Scholar
  170. Saha D (2002) Multi-stage deformation in the Nallamalai fold belt, Cuddapah basin, South India – implications for Mesoproterozoic tectonism along Southeastern margin of India. Gondw Res 5:701–719CrossRefGoogle Scholar
  171. Saha D (2011) Dismembered ophiolites in Paleoproterozoic nappe complexes of Kandra and Gurramkonda, South India. J Asian Earth Sci 42:158–175CrossRefGoogle Scholar
  172. Saha D, Chakraborty S (2003) Deformation pattern in the Kurnool and Nallamalai groups in the Northeastern part (Palnad area) of the Cuddapah basin, South India and its implication on Rodinia. Gondw Res 6:73–83CrossRefGoogle Scholar
  173. Saha D, Mazumder R (2012) An overview of the Paleoproterozoic geology of peninsular India, and key stratigraphic and tectonic issues. In: Mazumder R, Saha D (eds) Paleoproterozoic of India. Geological Society, London, Special Publications, vol 365. Geological Society of London, London, pp 5–29Google Scholar
  174. Saha D, Deb GK, Dutta S (2000) Granite greenstone relationship in the Sonakhan Belt, Raipur District, Central India. Geol Surv India Spec Publ 57:67–78Google Scholar
  175. Saha D, Chakraborti S, Tripathy V (2010) Intracontinental thrusts and inclined transpression along Eastern margin of the East Dharwar Craton, India. J Geol Soc India 75:323–337CrossRefGoogle Scholar
  176. Saha D, Bhowmik S, Bose S, Sajeev K (2016a) Proterozoic tectonics and trans-Indian mobile belts: a status report. Proc Indian Natl Sci Acad 82:445–460Google Scholar
  177. Saha D, Patranabis-Deb S, Collins AS (2016b) Proterozoic stratigraphy of Southern Indian Cratons and global context. In: Montenari M (ed) Stratigraphy & timescales, vol 1. Elsevier, Amsterdam, pp 1–59Google Scholar
  178. Santosh M, Sajeev K, Li JH (2006) Extreme crustal metamorphism during Columbia supercontinent assembly: evidence from North China Craton. Gondw Res 10:256–266CrossRefGoogle Scholar
  179. Santosh M, Maruyama S, Sato K (2009) Anatomy of a Cambrian suture in Gondwana: Pacific-type orogeny in Southern India? Gondw Res 16:321–341CrossRefGoogle Scholar
  180. Santosh M, Yang QY, Shaji E, Tsunogae T, Ram Mohan M, Satyanarayanan M (2015) An exotic Mesoarchean microcontinent: the Coorg Block, Southern India. Gondw Res 27:165–195CrossRefGoogle Scholar
  181. Santosh M, Yang QY, Shaji E, Ram Mohan M, Tsunogae T, Satyanarayanan M (2016) Oldest rocks from Peninsular India: evidence for Hadean to Neoarchean crustal evolution. Gondw Res 29:105–135CrossRefGoogle Scholar
  182. Santosh M, Arai T, Maruyama S (2017a) Hadean Earth and primordial continents: the cradle of prebiotic life. Geosci Front 8:309–327CrossRefGoogle Scholar
  183. Santosh M, Hu CN, He XF, Li SS, Tsunogae T, Shaji E, Indu G (2017b) Neoproterozoic arc magmatism in the Southern Madurai block, India: subduction, relamination, continental outbuilding, and the growth of Gondwana. Gondw Res 45:1–42CrossRefGoogle Scholar
  184. Sarangi S, Gopalan K, Kumar S (2004) Pb–Pb age of earliest megascopic eukaryotic alga bearing Rohtas Formation, Vindhyan Supergroup, India: implications for Precambrian atmospheric oxygen evolution. Precambrian Res 132:107–121CrossRefGoogle Scholar
  185. Sarkar T, Schenk V (2014) Two-stage granulite formation in a Proterozoic magmatic arc (Ongole domain of the Eastern Ghats Belt, India): Part 1. petrology and pressure temperature evolution. Precambrian Res 255:485–509CrossRefGoogle Scholar
  186. Sarkar G, Corfu F, Paul DK, McNaughton NJ, Gupta SN, Bishui PK (1993) Early Archaean crust in Bastar Craton, Central India: a geochemical and isotopic study. Precambrian Res 62:127–132CrossRefGoogle Scholar
  187. Sarkar T, Schenk V, Appel P, Berndt J, Sengupta P (2014) Two-stage granulite formation in a Proterozoic magmatic arc (Ongole domain of the Eastern Ghats Belt, India): Part 2. LA-ICP-MS zircon dating and texturally controlled in situ monazite dating. Precambrian Res 255:467–484CrossRefGoogle Scholar
  188. Sarkar T, Schenk V, Berndt J (2015) Formation and evolution of a Proterozoic magmatic arc: geochemical and geochronological constraints from meta-igneous rocks of the Ongole domain, Eastern Ghats Belt, India. Contrib Mineral Petrol 169:1–27CrossRefGoogle Scholar
  189. Sears JW, Price RA (2000) New look at the Siberian connection: No SWEAT. Geology 28:423–426CrossRefGoogle Scholar
  190. Sears JW, Price RA (2003) Tightening the Siberian connection to western Laurentia. Geol Soc Am Bull 115:943–953CrossRefGoogle Scholar
  191. Sharma R (2009) Aravalli mountain belt. In: Cratons and fold belts of India. Lecture notes in Earth sciences, vol 127. Springer Nature, Cham, pp 143–176CrossRefGoogle Scholar
  192. Sharma M, Basu AR, Ray SL (1994) Sm–Nd isotopic and geochemical study of the Archaean tonalite amphibolite association from the Eastern Indian Craton. Contrib Mineral Petrol 117:45–55CrossRefGoogle Scholar
  193. Shirey SB, Richardson SH (2011) Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental mantle. Science 333:434–436CrossRefGoogle Scholar
  194. Sinha-Roy S, Malhotra G, Guha DB (1995) A transect across Rajasthan Precambrian terrain in relation to geology, tectonics and crustal evolution in South-Central Rajasthan. Geol Soc India Mem 31:63–89Google Scholar
  195. Sleep HN (1992) Time dependence of mantle plumes: some simple theory. J Geophys Res Solid Earth 97(B13):20007–20019CrossRefGoogle Scholar
  196. Smithies RH, Champion DC, Cassidy KF (2003) Formation of Earth’s early Archaean continental crust. Precambrian Res 127:89–101CrossRefGoogle Scholar
  197. Smithies RH, Van Kranendonk MJ, Champion DC (2005) The Mesoarchean emergence of subduction. Gondw Res 11:50–68CrossRefGoogle Scholar
  198. Srivastava R (2013) Petrological and geochemical characteristics of Paleoproterozoic ultramafic lamprophyres and carbonatites from the Chitrangi region, Mahakoshal Supracrustal Belt, Central India. J Earth Syst Sci 122:759–776CrossRefGoogle Scholar
  199. Stern RJ (2005) Evidence from ophiolites, blueschists, and ultra-high pressure metamorphic terranes that the modern episode of subduction tectonics began in neoproterozoic time. Geology 33:557–560CrossRefGoogle Scholar
  200. Stern RJ (2007) When did plate tectonics begin? Theoretical and empirical considerations. Chin Bull Sci 52:578–591CrossRefGoogle Scholar
  201. Stern RJ, Avigad D, Miller N, Beyth M (2008) From volcanic winter to snowball earth: an alternative explanation for Neoproterozoic biosphere stress. Links between geological processes, microbial activities & evolution of life. Springer, Dordrecht, pp 313–337Google Scholar
  202. Stern RJ, Leybourne MI, Tsujimori T (2016) Kimberlites and the start of plate tectonics. Geology 44:799–802CrossRefGoogle Scholar
  203. Strik G. Blake TS, Zegers TE, White SH, Langereis CG (2003) Palaeomagnetism of flood basalts in the Pilbara Craton, Western Australia: Late Archaean continental drift and the oldest known reversal of the geomagnetic field. J Geophys Res, Solid Earth 108 (B12) 2551Google Scholar
  204. Tackley PJ (2000) Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations. Geochem Geophys Geosyst 1(8):2000GC000043Google Scholar
  205. Taylor SR, Rudnick RL, McLennan SM, Eriksson KA (1986) Rare earth element patterns in Archean high-grade metasediments and their tectonic significance. Geochim Cosmochim Acta 50:2267–2279CrossRefGoogle Scholar
  206. Torsvik TH, Smethurst MA, Meert JG, Van der Voo R, McKerrow WS, Brasier MD, Sturt BA, Walderhaug HJ (1996) Continental break-up and collision in the Neoproterozoic and Palaeozoic—a tale of Baltica and Laurentia. Earth Sci Rev 40(3):229–258CrossRefGoogle Scholar
  207. Tucker RD, Ashwal LD, Torsvik TH (2001) U–Pb geochronology of Seychelles granitoids: a Neoproterozoic continental arc fragment. Earth Planet Sci Lett 187(1):27–38CrossRefGoogle Scholar
  208. Turner S, Rushmer T, Reagan M, Moyen JF (2014) Heading down early on? Start of subduction on Earth. Geology 42(2):139–142CrossRefGoogle Scholar
  209. Valentine JW, Moores EM (1970) Plate-tectonic regulation of faunal diversity and sea level: a model. Nature 228:657–659CrossRefGoogle Scholar
  210. Valentine JW, Moores EM (1972) Global tectonics and the fossil record. J Geol 80:167–184CrossRefGoogle Scholar
  211. Wegener A (1912) Die entstehung der kontinente. Geologische Rundschau 3(4):276–292CrossRefGoogle Scholar
  212. Wegener A (1922) Die Entstehung der Kontinente und Ozeane [On the Origin of Continents and Oceans]. English translation of 3rd edition by JGA Skerl (1924). Methuen, London, p 212Google Scholar
  213. Weil AB, Van der Voo R, MacNiocall C, Meert JG (1998) The Proterozoic supercontinent Rodinia: paleomagnetically derived reconstructions for 1100 to 800 Ma. Earth Planet Sci Lett 154:13–24CrossRefGoogle Scholar
  214. Williams H, Hoffman PF, Lewry JF, Monger JWH, Rivers T (1991) Anatomy of North America. Tectonophysics 187:117–134CrossRefGoogle Scholar
  215. Wingate MT, Giddings JW (2000) Age and palaeomagnetism of the Mundine Well dyke swarm, Western Australia: implications for an Australia-Laurentia connection at 755 Ma. Precambrian Res 100:335–357CrossRefGoogle Scholar
  216. Wingate MT, Pisarevsky SA, Evans DA (2002) Rodinia connections between Australia and Laurentia: no SWEAT, no AUSWUS? Terra Nova 14:121–128Google Scholar
  217. Yan Q, Hanson AD, Wang Z, Druschke PA, Yan Z, Wang T, Liu D, Song B, Jian P, Zhou H, Jiang C (2004) Neoproterozoic subduction and rifting on the Northern margin of the Yangtze Plate, China: implications for Rodinia reconstruction. Int Geol Rev 46(9):817–832CrossRefGoogle Scholar
  218. Yang QY, Ganguly S, Santosh M, Shaji E, Dong Y, Nanda-Kumar V (2017) Extensional collapse of the Gondwana orogen: evidence from Cambrian mafic magmatism in the Trivandrum Block, Southern India. Geosci Front 10:263CrossRefGoogle Scholar
  219. Yedekar DB, Jain SC, Nair KKK, Dutta KK (1990) The Central Indian collision suture. Precambrian of Central India. Geol Surv India Spec Publ 28:1–37Google Scholar
  220. Yellappa T, Chetty TRK, Tsunogae T, Santosh M (2010) The Manamedu complex: geochemical constraints on Neoproterozoic suprasubduction zone ophiolite formation within the Gondwana suture in Southern India. J Geodyn 50:268–285CrossRefGoogle Scholar
  221. Yin A, Dubey CS, Webb AAG, Kelty TK, Grove M, Gehrels GE, Burgess WP (2010) Geologic correlation of the Himalayan orogen and Indian Craton: Part 1. Structural geology, U-Pb zircon geochronology, and tectonic evolution of the Shillong Plateau and its neighboring regions in NE India. Geol Soc Am Bull 122:336–359CrossRefGoogle Scholar
  222. Yoshida M, Jacobs J, Santosh M, Rajesh HM (2003) Role of Pan-African events in the Circum-East Antarctic orogen of East Gondwana: a critical overview. In: Yoshida M, Windley BF, Dasgupta S (eds) Proterozoic East Gondwana: supercontinent assembly and breakup. Geological Society, London, Special Publications, vol 206. Geological Society of London, London, pp 57–75Google Scholar
  223. Zegers TE, Ocampo A (2003) Vaalbara and tectonic effects of a mega impact in the early archean 3470 Ma. Third International Conference on Large Meteorite Impacts, Nordlingen, Germany. Lunar and Planetary Institute, Houston, TXGoogle Scholar
  224. Zegers TE, de Wit MJ, Dann J, White SH (1998) Vaalbara, Earth’s oldest assembled continent? A combined structural, geochronological, and palaeomagnetic test. Terra Nova 10:250–259CrossRefGoogle Scholar
  225. Zhao G, Cawood PA, Wilde SA, Sun M (2002) Review of global 2.1–1.8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth Sci Rev 59:125–162CrossRefGoogle Scholar
  226. Zhao G, Sun M, Wilde SA, Li S (2004) A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup. Earth Sci Rev 67(1):91–123CrossRefGoogle Scholar
  227. Zhou MF, Kennedy AK, Sun M, Malpas J, Lesher CM (2002) Neoproterozoic Arc‐Related Mafic Intrusions along the Northern Margin of South China: Implications for the Accretion of Rodinia. The Journal of Geology 110 (5):611–618CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sarbani Patranabis-Deb
    • 1
  • Dilip Saha
    • 1
  • M. Santosh
    • 2
  1. 1.Geological Studies UnitIndian Statistical InstituteKolkataIndia
  2. 2.China University of Geosciences BeijingBeijingChina

Personalised recommendations