Advertisement

Nonlinear A/D Converters

  • Mauro SantosEmail author
  • Jorge Guilherme
  • Nuno Horta
Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 558)

Abstract

There are several analog-to-digital converter architectures described in the literature that implement a nonlinear conversion characteristic. This chapter presents an overview of the different architectures and how the nonlinear characteristic is achieved and summarizes the state-of-the-art for each of the architectures. Most of the architectures described in the following sections can be used to implement arbitrary nonlinear transfer characteristics, however most of the examples found in the literature show logarithmic transfer functions. For the same conversion resolution, a logarithmic converter can attain a larger input dynamic range than a linear converter, conversely for linear and logarithmic converters with a similar input dynamic range, the logarithmic converter will attain a smaller signal to noise ratio. Figure 2.1 shows an example of a conversion result of a sinusoidal signal by converters with different conversions characteristics. On the left, the conversion result for a linear converter shows a constant quantization step while for the other two converters the quantization step is not constant. The floating-point converter is characterized by having zones with a constant quantization step, with the quantization step being different from zone to zone. The logarithmic converter on the other hand does not have a fixed quantization step like the linear converter, or zones where the quantization step is fixed like in the floating-point converter. In the logarithmic converter the quantization step increases progressively from a small quantization step for small input signals to a large quantization step for large input signals.

References

  1. 1.
    D.U. Thompson, B.A. Wooley, A 15-b pipelined CMOS floating-point A/D converter. IEEE J. Solid-State Circ. 36(2), 299–303 (2001)CrossRefGoogle Scholar
  2. 2.
    P. Kosonen, A floating-point ADC with variable gain pipeline stages. Analog Integr. Circ. Sig. Process 36(3), 259–261 (2003)CrossRefGoogle Scholar
  3. 3.
    H. Lampinen, O. Vainio, A new dual-mode data compressing A/D converter, in IEEE International Symposium on Circuits and Systems (1997), pp. 429–432Google Scholar
  4. 4.
    J. Piper, J. Yuan, Realization of a floating-point A/D converter, in IEEE International Symposium on Circuits and Systems, Sydney, NSW, 2001, pp. 404–407Google Scholar
  5. 5.
    Y.S. Shu, M. Kyung, W.M. Lee, B.S. Song, B. Pain, A 10–15-bit 60-MS/s floating-point ADC with digital gain and offset calibration. IEEE J. Solid-State Circ. 44(9), 2356–2365 (2009)CrossRefGoogle Scholar
  6. 6.
    F. Chen, C.S. Chen, A 20 b dynamic-range floating-point data acquisition system, in IEEE Transactions on Industrial Electronics, vol. 38, no. 1 (1991), pp. 10–14Google Scholar
  7. 7.
    V.Z. Groza, High-resolution floating-point ADC. IEEE Trans. Instrum. Meas. 50(6), 1822–1829 (2001)CrossRefGoogle Scholar
  8. 8.
    M. Sadaghdar, K. Iniewski, M. Syrzycki, 11-bit floating-point pipelined analog to digital converter in 0.18 μm CMOS, in Canadian Conference on Electrical and Computer Engineering (2004), pp. 1503–1506Google Scholar
  9. 9.
    J. Piper, J. Yuan, Design considerations of a floating-point ADC with embedded S/H, in IEEE International Symposium on Circuits and Systems (2005), pp. 6166–6169Google Scholar
  10. 10.
    Y.-S. Shu, M.-J. Kyung, W.-M. Lee, B.-S. Song, B. Pain, A 10–15b 60MS/s floating-point ADC with digital gain and offset calibration, in IEEE Custom Integrated Circuits Conference, San Jose, CA (2008), pp. 157–160Google Scholar
  11. 11.
    S. Wang, V. Maheshwari, W.A. Serdijn, Instantaneously companding baseband SC low-pass filter and ADC for 802.1 la/g WLAN receiver, in IEEE International Symposium on Circuits and Systems, Paris (2010), pp. 2215–2218Google Scholar
  12. 12.
    S. Cantarano, G.V. Pallottino, Logarithmic analog-to-digital converters: a survey. IEEE Trans. Instrum. Meas. 22(3), 201–213 (1973)CrossRefGoogle Scholar
  13. 13.
    J. Guilherme, Architectures for high dynamic range CMOS pipeline analogue-to-digital signal conversion, Ph.D. dissertation, Universidade Técnica de Lisboa, Instituto Superior Técnico, Lisbon, Portugal (2003)Google Scholar
  14. 14.
    J. Lee et al., A 2.5 mW 80 dB DR 36 dB SNDR 22MS/s Logarithmic Pipeline ADC, in IEEE Symposium on VLSI Circuits, Kyoto (2007), pp. 194–195Google Scholar
  15. 15.
    S. Sirimasakul, A. Thanachayanont, W. Jeamsaksiri, Low-power current-mode logarithmic pipeline analog-to-digital converter for ISFET based pH sensor, in 9th International Symposium on Communications and Information Technology, Icheon (2009), pp. 1340–1343Google Scholar
  16. 16.
    J. Guilherme, J. E. Franca, New CMOS logarithmic A/D converters employing pipeline and algorithmic architectures, in IEEE International Symposium on Circuits and Systems, Seattle, WA (1995), pp. 529–532Google Scholar
  17. 17.
    J. Guilherme, J. Vital, J. Franca, A true logarithmic analog-to-digital pipeline converter with 1.5 bit/stage and digital correction, in IEEE International Conference on Electronics, Circuits and Systems (2001), pp. 393–396Google Scholar
  18. 18.
    J. Lee et al., A 2.5 mW 80 dB DR 36 dB SNDR 22 MS/s logarithmic pipeline ADC. IEEE J. Solid-State Circ. 44(10), 2755–2765 (2009)CrossRefGoogle Scholar
  19. 19.
    B. Lienert, J. Porter, N. Ahlquist, D. Harris, S. Sharma, A 50 MHz logarithmic amplifier for use in lidar measurements, in IEEE International Geoscience and Remote Sensing Symposium, Sydney, NSW (2001), pp. 2914–2915Google Scholar
  20. 20.
    J. Guilherme, J. Vital, J.E. Franca, New logarithmic two-step flash A/D converter with digital error correction for MOS technology, in 38th Midwest Symposium on Circuits and Systems, Rio de Janeiro (1995), pp. 881–884Google Scholar
  21. 21.
    J. Mahattanakul, Logarithmic data converter suitable for hearing aid applications. Electron. Lett. 41(7), 394–396 (2005)CrossRefGoogle Scholar
  22. 22.
    S.-F. Chen, Y.-J. Juang, S.-Y. Huang, Y.-C. King, Logarithmic CMOS image sensor through multi-resolution analog-to-digital conversion, in International Symposium on VLSI Technology, Systems and Applications (2003), pp. 227–230Google Scholar
  23. 23.
    J. Guo, S. Sonkusale, Current-mode readout cicuits with pixel-level logarithmic ADC for IR FPA applications, in 51st Midwest Symposium on Circuits and Systems, Knoxville, TN (2008), pp. 394–397Google Scholar
  24. 24.
    S.-M. Lee, H. Park, B.A. Wooley, Per-pixel floating-point ADCs with electronic shutters for a high dynamic range, high frame rate infrared focal plane array, in IEEE Custom Integrated Circuits Conference 2006, San Jose, CA (2006), pp. 647–650Google Scholar
  25. 25.
    A.J. López-Martín, M. Zuza, A. Carlosena, A CMOS A/D converter with piecewise linear characteristic and its application to sensor linearization. Analog Integr. Circ. Sig. Process 36(1), 39–46 (2003)CrossRefGoogle Scholar
  26. 26.
    G. Bucci, M. Faccio, C. Landi, New ADC with piecewise linear characteristic: case study-implementation of a smart humidity sensor. IEEE Trans. Instrum. Meas. 49(6), 1154–1166 (2000)CrossRefGoogle Scholar
  27. 27.
    G. Bucci, M. Faccio, C. Landi, The implementation of a smart sensor based on a piece-linear A/D converter, in IEEE Instrumentation and Measurement Technology Conference Sensing, Processing, Networking, Ottawa, ON (1997), pp. 1173–1177Google Scholar
  28. 28.
    R. Golanski, Study on the dynamic range of delta modulations with time-varying sampling periods. IEEE Signal Process. Lett. 11(8), 666–669 (2004)CrossRefGoogle Scholar
  29. 29.
    K. De, S. Kal, A low power 6-bit A/D converter achieving 10-bit resolution for MEMS sensor interface using time-interleaved delta modulation, in 19th International Conference on VLSI Design (2006)Google Scholar
  30. 30.
    S.W. Leung, Y.S. Zhu, C.M. Wong, K.K. Wong, Adaptive nonuniform sampling delta modulation for image processing, in International Symposium on Time-Frequency and Time-Scale Analysis, Paris (1996), pp. 269–272Google Scholar
  31. 31.
    Y.S. Zhu, S.W. Leung, C.M. Wong, Adaptive non-uniform sampling delta modulation for audio/image processing. IEEE Trans. Consum. Electron. 42(4), 1062–1072 (1996)CrossRefGoogle Scholar
  32. 32.
    K. Niwa, A. Yukawa, A. Tomozawa, A discretely adaptive delta modulation codec. IEEE Trans. Commun. 29(2), 168–173 (1981)CrossRefGoogle Scholar
  33. 33.
    L. Hernandez, S. Paton, Noise shaping modulator with logarithmic response. Electron. Lett. 35(12), 955–956 (1999)Google Scholar
  34. 34.
    S. Kumar, S. Chatterjee, A 110-dB dynamic range, 76-dB peak SNR companding continuous-time ΔΣ modulator for audio applications, in International Conference on VLSI Design, Hyderabad (2012), pp. 51–56Google Scholar
  35. 35.
    L. Hernandez, S. Paton, A continuous-time noise-shaping modulator for logarithmic A/D conversion, in IEEE International Symposium on Circuits and Systems, Orlando, FL (1999) pp. 364–367Google Scholar
  36. 36.
    D. Weiler, P.A. Nielsen, D. Hammerschmidt, O. Machul, B.J. Hosticka, Single bit sigma-delta modulator with nonlinear quantization for µ-law coding, in European Solid-State Circuits Conference, Southampton, UK (1997) pp. 80–83Google Scholar
  37. 37.
    J.N. Lygouras, Non-linear analogue-to-digital conversion through PWM. Int. J. Electron. 62(3), 347–352 (1987)CrossRefGoogle Scholar
  38. 38.
    J.M.D. Pereira, O. Postolache, P.S. Girao, PWM-A/D conversion: a flexible and low-cost solution for transducer linearization, in Proceedings of the First ISA/IEEE Conference Sensors for Industry, Rosemont, IL (2001), pp. 258–263Google Scholar
  39. 39.
    J.M.D. Pereira, O. Postolache, P.M. Girão, A.C. Serra, A discrete and cost effective adc solution based on a pulse-width modulation technique, in Conference on Telecommunications—ConfTele, Figueira da Foz (2001), pp. 153–156Google Scholar
  40. 40.
    J.M.D. Pereira, O. Postolache, P.S. Girao, A digitally programmable A/D converter for smart sensors applications, in IEEE Instrumentation and Measurement Technology Conference Proceedings, Ottawa, ON (2005), pp. 156–159Google Scholar
  41. 41.
    D.K. Anvekar, B.S. Sonde, A programmable nonlinear ADC using optimal-sized ROM. IEEE Trans. Instrum. Meas. 40(6), 1031–1035 (1991)CrossRefGoogle Scholar
  42. 42.
    J.N. Lygouras, Nonlinear ADC with digitally selectable quantizing characteristic. IEEE Trans. Nucl. Sci. 35(5), 1088–1091 (1988)CrossRefGoogle Scholar
  43. 43.
    M. Alhawari, N. Albelooshi, M.H. Perrott, A 0.5 V ‹4 µW CMOS photoplethysmographic heart-rate sensor IC based on a non-uniform quantizer, in 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA (2013), pp. 384–385Google Scholar
  44. 44.
    Y. Sundarasaradula, T. G. Constandinou, A. Thanachayanont, A 6-bit, two-step, successive approximation logarithmic ADC for biomedical applications, in 2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS), Monte Carlo (2016), pp. 25–28Google Scholar
  45. 45.
    J.-W. Kwon et al., A two-step 5b logarithmic ADC with minimum step-size of 0.1% full-scale for MLC phase-change memory readout, in Proceedings of the IEEE 2014 Custom Integrated Circuits Conference, San Jose, CA (2014), pp. 1–4Google Scholar
  46. 46.
    J.-W. Kwon et al., A low-power TDC-configured logarithmic resistance sensor for MLC PCM readout. IEEE Sens. J. 16(14), 5524–5535 (2015)CrossRefGoogle Scholar
  47. 47.
    D.-H. Jin et al., A 15 µm-pitch, 8.7-ENOB, 13-Mcells/sec logarithmic readout circuit for multi-level cell phase change memory. IEEE J. Solid-State Circ. 50(10), 2431–2440 (2015)CrossRefGoogle Scholar
  48. 48.
    B.E. Jonsson, On CMOS scaling and A/D-converter performance, in NORCHIP, Tampere (2010), pp. 1–4Google Scholar
  49. 49.
    B.E. Jonsson, A survey of A/D-converter performance evolution, in IEEE International Conference on Electronics, Circuits and Systems, Athens (2010), pp. 766–769Google Scholar
  50. 50.
    IEEE Standard for Terminology and Test Methods for Analog-to-Digital Converters, IEEE Std 1241–2010 (Revision of IEEE Std 1241–2000), 2011Google Scholar
  51. 51.
    J. Guilherme, Performance testing of logarithmic analog-to-digital converters, in IMEKO TC-7 Symposium, Lisbon (2001), pp. 71–74Google Scholar
  52. 52.
    J. Doernberg, H.-S. Lee, D.A. Hodges, Full-speed testing of A/D converters. IEEE J. Solid-State Circ. 19(6), 820–827 (1984)CrossRefGoogle Scholar
  53. 53.
    G. Bucci, M. Faccio, C. Landi, The performance test of a piecewise-linear A/D converter, in IEEE Instrumentation and Measurement Technology Conference, St. Paul, MN (1998), pp. 1223–1228Google Scholar
  54. 54.
    F. Alegria, P. Arpaia, A.C. Serra, P. Daponte, Performance analysis of an ADC histogram test using small triangular waves. IEEE Trans. Instrum. Meas. 51(4), 723–729 (2002)CrossRefGoogle Scholar
  55. 55.
    T. Nguyen, S. Zupancic, D.Y.C. Lie, Engineering challenges in cochlear implants design and practice. IEEE Circuits and Systems Magazine 12(4), 47–55 (Fourthquarter 2012) Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Synopsys Portugal LdaPorto SalvoPortugal
  2. 2.Instituto Superior TécnicoInstituto TelecomunicaçõesLisbonPortugal
  3. 3.Instituto Superior TécnicoInstituto TelecomunicaçõesLisbonPortugal

Personalised recommendations