Advertisement

Fabrication of Dental Restorations Using Digital Technologies: Techniques and Materials

  • Omar Alageel
  • Berge Wazirian
  • Balqees Almufleh
  • Faleh TamimiEmail author
Chapter

Abstract

Digital technology such as computer-aided design/computer-aided manufacture (CAD/CAM) is rapidly expanding and transforming dentistry at an unprecedented pace. CAD/CAM technology in dentistry can be classified as either “subtractive” or “additive” manufacturing methods. Subtractive manufacturing method includes machining and milling (CAM) and laser ablation technologies, while additive manufacturing method includes 3D printing and laser melting technologies. Different materials (polymers, metals, and ceramics) and equipment are commercially available for various dental applications such as custom trays, surgical guides, temporary or definite fixed or removable dental prostheses, and orthodontic or maxillofacial appliances. This chapter reviews the main systems including production processes, dental applications, available materials and equipment, and advantages and limitations of the technology.

Keywords

CAD/CAM Laser ablation 3D printing Laser melting Stereolithography Digital light projection Polyjet/multijet Inkjet printing Fused deposition modeling Selective electron beam melting 

References

  1. 1.
    Davidowitz G, Kotick PG. The use of CAD/CAM in dentistry. Dent Clin N Am. 2011;55(3):559–70.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Miyazaki T, Hotta Y. CAD/CAM systems available for the fabrication of crown and bridge restorations. Aust Dent J. 2011;56(s1):97–106.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Van Noort R. The future of dental devices is digital. Dent Mater. 2012;28(1):3–12.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Patel N. Contemporary dental CAD/CAM: modern chairside/lab applications and the future of computerized dentistry. Compend Contin Educ Dent. 2014;35(10):739–46.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Strub JR, Rekow ED, Witkowski S. Computer-aided design and fabrication of dental restorations: current systems and future possibilities. J Am Dent Assoc. 2006;137(9):1289–96.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Global Market Insights, Inc Healthcare 3D printing market worth over $2.2 billion by 2024. 2017.Google Scholar
  7. 7.
    Persistence Market Research. Additive manufacturing market to develop rapidly by 2016–2026. 2017.Google Scholar
  8. 8.
    Schubert C, van Langeveld MC, Donoso LA. Innovations in 3D printing: a 3D overview from optics to organs. Br J Ophthalmol. 2014;98(2):159–61.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Barazanchi A, et al. Additive technology: update on current materials and applications in dentistry. J Prosthodont. 2017;26(2):156–63.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Ventola CL. Medical applications for 3D printing: current and projected uses. Pharm Ther. 2014;39(10):704.Google Scholar
  11. 11.
    Beuer F, Schweiger J, Edelhoff D. Digital dentistry: an overview of recent developments for CAD/CAM generated restorations. Br Dent J. 2008;204(9):505.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Braian M, et al. Geometrical accuracy of metallic objects produced with additive or subtractive manufacturing: a comparative in vitro study. Dent Mater. 2018;34(7):978–93.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Alghazzawi TF. Advancements in CAD/CAM technology: options for practical implementation. J Prosthodont Res. 2016;60(2):72–84.CrossRefGoogle Scholar
  14. 14.
    Abduo J, Lyons K, Bennamoun M. Trends in computer-aided manufacturing in prosthodontics: a review of the available streams. Int J Dent. 2014;2014:783948.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Beuer F, et al. Digital dentistry: an overview of recent developments for CAD/CAM generated restorations. Br Dent J. 2008;204(9):505–11.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Tapie L, et al. Understanding dental CAD/CAM for restorations—the digital workflow from a mechanical engineering viewpoint. Int J Comput Dent. 2015;18(1):21–44.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Baroudi K, Ibraheem SN. Assessment of chair-side computer-aided design and computer-aided manufacturing restorations: a review of the literature. J Int Oral Health. 2015;7(4):96–104.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Brochu M. Focalisation sur les scanneurs dentaires numériques: la science a l'appui. J Can Dent Res de Prosthodont. 2009;2009:45–8.Google Scholar
  19. 19.
    Giordano R. Materials for chairside CAD/CAM-produced restorations. J Am Dent Assoc. 2006;137:14S–21S.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Christensen GJ. Is now the time to purchase an in-office CAD/CAM device? J Am Dent Assoc. 2006;137(2):235–8.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Cheng LKL, Kooistra CS. Current chairside CAD/CAM systems and materials for dental restorations. Clin Update. 2014;36:4.Google Scholar
  22. 22.
    Miyazaki T, et al. A review of dental CAD/CAM: current status and future perspectives from 20 years of experience. Dent Mater J. 2009;28(1):44–56.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Fasbinder DJ, et al. A clinical evaluation of chairside lithium disilicate CAD/CAM crowns. J Am Dent Assoc. 2010;141:10S–4S.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Fasbinder DJ. Chairside CAD/CAM: an overview of restorative material options. Compend Contin Educ Dent (Jamesburg, NJ: 1995). 2012;33(1):50–8.Google Scholar
  25. 25.
    Fasbinder DJ, Neiva GF. Surface evaluation of polishing techniques for new resilient CAD/CAM restorative materials. J Esthet Restor Dent. 2016;28(1):56–66.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Lambert H, Durand JC, Jacquot B, Fages M. Dental biomaterials for chairside CAD/CAM: State of the art. J Adv Prosthodont. 2017;9(6):486–95.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Skramstad M, Fasbinder D. Full-contour zirconia fixed partial dentures as chairside applications: a case report. Compend Contin Educ Dent (Jamesburg, NJ: 1995). 2016;37(9):648–54.Google Scholar
  28. 28.
    Blatz MB, Conejo J. The current state of chairside digital dentistry and materials. Dent Clin North Am. 2019;63(2):175–97.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Sannino G, et al. CEREC CAD/CAM chairside system. Oral Implantol (Rome). 2014;7(3):57–70.Google Scholar
  30. 30.
    Andreev A, Kosenko M, Petrovskiy V. The use of laser milling for prototyping of dental structures. Bull Lebedev Phys Inst. 2015;42(9):255–9.CrossRefGoogle Scholar
  31. 31.
    Joda T, et al. Digital technology in fixed implant prosthodontics. Periodontology. 2017;73(1):178–92.CrossRefGoogle Scholar
  32. 32.
    Laser ablation system for dental restorations. Accessed 1 May 2018. http://www.dentalwings.com/products/laser-milling-system/
  33. 33.
    Rynerson M. Introduction of our revolutionary laser milling technology. 2015. http://www.dentalwings.com/news/introduction-of-our-revolutionary-laser-milling-technology/. Accessed 2 Feb 2018.Google Scholar
  34. 34.
    Dawood A, et al. 3D printing in dentistry. Br Dent J. 2015;219(11):521.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Stansbury JW, Idacavage MJ. 3D printing with polymers: challenges among expanding options and opportunities. Dent Mater. 2016;32(1):54–64.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Azari A, Nikzad S. The evolution of rapid prototyping in dentistry: a review. Rapid Prototyp J. 2009;15(3):216–25.CrossRefGoogle Scholar
  37. 37.
    Totu EE, et al. Poly(methyl methacrylate) with TiO2 nanoparticles inclusion for stereolithographic complete denture manufacturing - the future in dental care for elderly edentulous patients? J Dent. 2017;59:68–77.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Liu Q, Leu MC, Schmitt SM. Rapid prototyping in dentistry: technology and application. Int J Adv Manuf Technol. 2006;29(3–4):317–35.CrossRefGoogle Scholar
  39. 39.
    Touri M, Kabirian F, Saadati M, Ramakrishna S, Mozafari M. Additive manufacturing of biomaterials− the evolution of rapid prototyping. Adv Eng Mater. 2019;21(2):1800511.CrossRefGoogle Scholar
  40. 40.
    Osman RB, Alharbi N, Wismeijer D. Build angle: does it influence the accuracy of 3D-printed dental restorations using digital light-processing technology? Int J Prosthodont. 2017;30(2):182–8.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Revilla-León M, Özcan M. Additive manufacturing technologies used for processing polymers: current status and potential application in prosthetic dentistry. J Prosthodont. 2019;28(2):146–58.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Li SY, et al. Biological evaluation of three-dimensional printed co-poly lactic acid/glycolic acid/tri-calcium phosphate scaffold for bone reconstruction. Zhonghua Kou Qiang Yi Xue Za Zhi. 2016;51(11):661–6.PubMedGoogle Scholar
  43. 43.
    Dehurtevent M, et al. Stereolithography: a new method for processing dental ceramics by additive computer-aided manufacturing. Dent Mater. 2017;33(5):477–85.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Abbasi AJ, et al. Mandibular rami implant: a new approach in mandibular reconstruction. J Oral Maxillofac Surg. 2017;75(12):2550–8.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Ahn SY, et al. Computer-aided design/computer-aided manufacturing-guided endodontic surgery: guided osteotomy and apex localization in a mandibular molar with a thick buccal bone plate. J Endod. 2018;44(4):665–70.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Wang L, et al. Clinical application of individualized three-dimensional printing implant template in multi-tooth dental implantation. Shanghai Kou Qiang Yi Xue. 2017;26(4):453–7.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Rathi N, Scherer MD, McGlumphy E. Stabilization of a computer-aided implant surgical guide using existing dental implants with conversion of an overdenture to a fixed prosthesis. J Prosthodont. 2014;23(8):634–8.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Lee WS, Lee DH, Lee KB. Evaluation of internal fit of interim crown fabricated with CAD/CAM milling and 3D printing system. J Adv Prosthodont. 2017;9(4):265–70.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Lin WS, Harris BT, Morton D. Use of CBCT imaging, open-source modeling software, and desktop stereolithography 3D printing to duplicate a removable dental prosthesis—a proof of concept. Compend Contin Educ Dent. 2017;38(8):e5–8.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Reyes A, Turkyilmaz I, Prihoda TJ. Accuracy of surgical guides made from conventional and a combination of digital scanning and rapid prototyping techniques. J Prosthet Dent. 2015;113(4):295–303.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Sun YC, et al. Progress in research and application of the edentulous custom trays. Zhonghua Kou Qiang Yi Xue Za Zhi. 2016;51(11):698–701.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Ishida Y, Miyasaka T. Dimensional accuracy of dental casting patterns created by 3D printers. Dent Mater J. 2016;35(2):250–6.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Alharbi N, Osman R, Wismeijer D. Effects of build direction on the mechanical properties of 3D-printed complete coverage interim dental restorations. J Prosthet Dent. 2016;115(6):760–7.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Johnson AW. Dental occlusion ties: a rapid, safe, and non-invasive maxillo-mandibular fixation technology. Laryngosc Investig Otolaryngol. 2017;2(4):178–83.CrossRefGoogle Scholar
  55. 55.
    Martorelli M, et al. A comparison between customized clear and removable orthodontic appliances manufactured using RP and CNC techniques. Dent Mater. 2013;29(2):e1–e10.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Batstone MD. Reconstruction of major defects of the jaws. Aust Dent J. 2018;63(Suppl 1):S108–s113.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Unkovskiy A, et al. Direct 3D printing of silicone facial prostheses: a preliminary experience in digital workflow. J Prosthet Dent. 2018;120(2):303–8.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Shaheen E, et al. Three-dimensional printed final occlusal splint for orthognathic surgery: design and validation. Int J Oral Maxillofac Surg. 2017;46(1):67–71.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Tamimi F, et al. Osseointegration of dental implants in 3D-printed synthetic onlay grafts customized according to bone metabolic activity in recipient site. Biomaterials. 2014;35(21):5436–45.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Koutsoukis T, et al. Selective laser melting technique of Co-Cr dental alloys: a review of structure and properties and comparative analysis with other available techniques. J Prosthodont. 2015;24(4):303–12.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Akova T, et al. Comparison of the bond strength of laser-sintered and cast base metal dental alloys to porcelain. Dent Mater. 2008;24(10):1400–4.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Venkatesh KV, Nandini VV. Direct metal laser sintering: a digitised metal casting technology. J Ind Prosthodont Soc. 2013;13(4):389–92.CrossRefGoogle Scholar
  63. 63.
    Deng KH, et al. Quantitative evaluation of printing accuracy and tissue surface adaptation of mandibular complete denture polylactic acid pattern fabricated by fused deposition modeling technology. Zhonghua Kou Qiang Yi Xue Za Zhi. 2017;52(6):342–5.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Revilla Leon M, et al. 3D metal printing – additive manufacturing technologies for frameworks of implant-borne fixed dental prosthesis. Eur J Prosthodont Restor Dent. 2017;25(3):143–7.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Rengier F, et al. 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg. 2010;5(4):335–41.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Weller C, Kleer R, Piller FT. Economic implications of 3D printing: market structure models in light of additive manufacturing revisited. Int J Prod Econ. 2015;164(Suppl C):43–56.CrossRefGoogle Scholar
  67. 67.
    Sames WJ, List FA, Pannala S, Dehoff RR, Babu SS. The metallurgy and processing science of metal additive manufacturing. Int Mater Rev. 2016;61(5):315–60.CrossRefGoogle Scholar
  68. 68.
    Mazzoli A. Selective laser sintering in biomedical engineering. Med Biol Eng Comput. 2013;51(3):245–56.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Wang X, et al. Direct selective laser sintering of hard metal powders: experimental study and simulation. Int J Adv Manuf Technol. 2002;19(5):351–7.CrossRefGoogle Scholar
  70. 70.
    Shellabear M, Nyrhilä O. DMLS-development history and state of the art. Laser assisted netshape engineering 4, Proceedings of the 4th LANE; 2004. p. 21–24.Google Scholar
  71. 71.
    Hollander DA, et al. Structural, mechanical and in vitro characterization of individually structured Ti–6Al–4V produced by direct laser forming. Biomaterials. 2006;27(7):955–63.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Oyar P. Laser sintering technology and balling phenomenon. Photomed Laser Surg. 2018;36(2):72–7.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Tan XP, Tan YJ, Chow CS, Tor SB, Yeong WY. Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: a state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility. Mater Sci Eng C. 2017;76:1328–43.CrossRefGoogle Scholar
  74. 74.
    Yap CY, Chua CK, Dong ZL, Liu ZH, Zhang DQ, Loh LE, Sing SL. Review of selective laser melting: materials and applications. Appl Phys Rev. 2015;2(4):041101.CrossRefGoogle Scholar
  75. 75.
    Alageel O, et al. Removable partial denture alloys processed by laser-sintering technique. J Biomed Mater Res B Appl Biomater. 2017;Google Scholar
  76. 76.
    Liu YF, et al. A preliminary study on the forming quality of titanium alloy removable partial denture frameworks fabricated by selective laser melting. Zhonghua Kou Qiang Yi Xue Za Zhi. 2017;52(6):351–4.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Ohkubo C, et al. Titanium removable denture based on a one-metal rehabilitation concept. Dent Mater J. 2017;36(5):517–23.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Almufleh B, et al. Patient satisfaction with laser-sintered removable partial dentures: a crossover pilot clinical trial. J Prosthet Dent. 2018;119:560–7.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Lima JMC, et al. Removable partial dentures: use of rapid prototyping. J Prosthodont. 2014;23(7):588–91.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Ye Y, et al. Adaptation and micro-structure of Co-Cr alloy maxillary complete denture base plates fabricated by selective laser melting technique. Lasers Med Sci. 2018;33(5):1025–30.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Kanazawa M, et al. Fabrication of titanium alloy frameworks for complete dentures by selective laser melting. J Prosthet Dent. 2014;112(6):1441–7.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Kim M-J, et al. Marginal accuracy and internal fit of 3-D printing laser-sintered Co-Cr alloy copings. Materials. 2017;10(1):93.PubMedCentralCrossRefGoogle Scholar
  83. 83.
    Hama Suleiman S, Vult von Steyern P. Fracture strength of porcelain fused to metal crowns made of cast, milled or laser-sintered cobalt-chromium. Acta Odontol Scand. 2013;71(5):1280–9.CrossRefGoogle Scholar
  84. 84.
    Dzhendov D, Dikova T. Application of selective laser melting in manufacturing of fixed dental prostheses. J IMAB. 2016;22(4):1414–7.CrossRefGoogle Scholar
  85. 85.
    Kul E, Aladag LI, Duymus ZY. Comparison of the metal-ceramic bond after recasting and after laser sintering. J Prosthet Dent. 2015;114(1):109–13.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    V H, et al. Evaluation of internal and marginal fit of two metal ceramic system – in vitro study. J Clin Diagn Res. 2014;8(12):Zc53–6.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Sundar MK, Chikmagalur SB, Pasha F. Marginal fit and microleakage of cast and metal laser sintered copings—an in vitro study. J Prosthodont Res. 2014;58(4):252–8.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Tamac E, Toksavul S, Toman M. Clinical marginal and internal adaptation of CAD/CAM milling, laser sintering, and cast metal ceramic crowns. J Prosthet Dent. 2014;112(4):909–13.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Iseri U, Ozkurt Z, Kazazoglu E. Shear bond strengths of veneering porcelain to cast, machined and laser-sintered titanium. Dent Mater J. 2011;30(3):274–80.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Prabhu R, et al. Clinical acceptability of metal-ceramic fixed partial dental prosthesis fabricated with direct metal laser sintering technique-5 year follow-up. J Ind Prosthodont Soc. 2016;16(2):193–7.CrossRefGoogle Scholar
  91. 91.
    Abou Tara M, et al. Clinical outcome of metal-ceramic crowns fabricated with laser-sintering technology. Int J Prosthodont. 2011;24(1):46–8.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Bilgin MS, et al. Comparison of fracture resistance between cast, CAD/CAM milling, and direct metal laser sintering metal post systems. J Prosthodont Res. 2016;60(1):23–8.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Chen J, et al. Design and manufacture of customized dental implants by using reverse engineering and selective laser melting technology. J Prosthet Dent. 2014;112(5):1088–1095.e1.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Mangano F, et al. Direct metal laser sintering titanium dental implants: a review of the current literature. Int J Biomater. 2014;2014:461534.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Traini T, et al. Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants. Dent Mater. 2008;24(11):1525–33.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Leuders S, et al. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance. Int J Fatigue. 2013;48:300–7.CrossRefGoogle Scholar
  97. 97.
    Tan N, et al. The influence of direct laser metal sintering implants on the early stages of osseointegration in diabetic mini-pigs. Int J Nanomedicine. 2017;12:5433–42.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Mangano F, et al. Histological evidence of the osseointegration of fractured direct metal laser sintering implants retrieved after 5 years of function. Biomed Res Int. 2017;2017:9732136.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Garcia-Gareta E, et al. Biomimetic surface functionalization of clinically relevant metals used as orthopaedic and dental implants. Biomed Mater. 2017;13(1):015008.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Mumith A, et al. Augmenting the osseointegration of endoprostheses using laser-sintered porous collars: an in vivo study. Bone Joint J. 2017;99-b(2):276–82.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Sumida T, et al. Custom-made titanium devices as membranes for bone augmentation in implant treatment: clinical application and the comparison with conventional titanium mesh. J Cranio-Maxillofac Surg. 2015;43(10):2183–8.CrossRefGoogle Scholar
  102. 102.
    Gahler A, Heinrich JG, Guenster J. Direct laser sintering of Al2O3–SiO2 dental ceramic components by layer-wise slurry deposition. J Am Ceram Soc. 2006;89(10):3076–80.CrossRefGoogle Scholar
  103. 103.
    Vandenbroucke B, Kruth J-P. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp J. 2007;13(4):196–203.CrossRefGoogle Scholar
  104. 104.
    Puskar T, et al. A comparative analysis of the corrosive effect of artificial saliva of variable pH on DMLS and cast Co-Cr-Mo dental alloy. Materials. 2014;7(9):6486–501.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Mengucci P, et al. Effects of build orientation and element partitioning on microstructure and mechanical properties of biomedical Ti-6Al-4V alloy produced by laser sintering. J Mech Behav Biomed Mater. 2017;71:1–9.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Sun S-H, et al. Build direction dependence of microstructure and high-temperature tensile property of Co–Cr–Mo alloy fabricated by electron beam melting. Acta Mater. 2014;64:154–68.CrossRefGoogle Scholar
  107. 107.
    Takaichi A, et al. Microstructures and mechanical properties of Co–29Cr–6Mo alloy fabricated by selective laser melting process for dental applications. J Mech Behav Biomed Mater. 2013;21:67–76.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Benedetti M, et al. The effect of post-sintering treatments on the fatigue and biological behavior of Ti-6Al-4V ELI parts made by selective laser melting. J Mech Behav Biomed Mater. 2017;71:295–306.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Alifui-Segbaya F, et al. Clinical relevance of laser-sintered Co-Cr alloys for prosthodontic treatments: a review. 2014.CrossRefGoogle Scholar
  110. 110.
    Xin XZ, et al. In vitro biocompatibility of Co–Cr alloy fabricated by selective laser melting or traditional casting techniques. Mater Lett. 2012;88(0):101–3.CrossRefGoogle Scholar
  111. 111.
    Xin X, et al. Surface characteristics and corrosion properties of selective laser melted Co–Cr dental alloy after porcelain firing. Dent Mater. 2014;30(3):263–70.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Kruth J-P, et al. Benchmarking of different SLS/SLM processes as rapid manufacturing techniques. 2005.Google Scholar
  113. 113.
    Laser sintering high-quality dental components. 2011. https://www.industrial-lasers.com/articles/2011/03/laser-sintering-high-quality.html. Accessed 3 Nov 2018.
  114. 114.
    Griffiths L. 3D printing in dentistry: “Laser melting is the future”. TCT accelerating 3D technology. 2015.Google Scholar
  115. 115.
    Bacchewar P, Singhal S, Pandey P. Statistical modelling and optimization of surface roughness in the selective laser sintering process. Proc Inst Mech Eng B J Eng Manuf. 2007;221(1):35–52.CrossRefGoogle Scholar
  116. 116.
    Nakata T, Shimpo H, Ohkubo C. Clasp fabrication using one-process molding by repeated laser sintering and high-speed milling. J Prosthodont Res. 2017;61(3):276–82.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    GE to buy SLM, Arcam for $1.4 billion in 3D printing push. 2016. https://www.cnbc.com. Accessed 2018.
  118. 118.
    Hill R. 3D systems to acquire phenix systems. 2013.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Omar Alageel
    • 1
    • 2
  • Berge Wazirian
    • 1
  • Balqees Almufleh
    • 1
    • 3
  • Faleh Tamimi
    • 1
    Email author
  1. 1.Faculty of DentistryMcGill UniversityMontrealCanada
  2. 2.College of Applied Medical SciencesKing Saud UniversityRiyadhSaudi Arabia
  3. 3.Department of Prosthetic Dental Sciences, College of DentistryKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations