Advertisement

Profiling Optimal Conditions for Capturing EDEM Proteins Complexes in Melanoma Using Mass Spectrometry

  • Cristian V. A. Munteanu
  • Gabriela N. Chiriţoiu
  • Andrei-Jose Petrescu
  • Ștefana M. PetrescuEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1140)

Abstract

Endoplasmic reticulum (ER) resident and secretory proteins that fail to reach their native conformation are selected for degradation through the ER-Associated Degradation (ERAD) pathway. The ER degradation-enhancing alpha-mannosidase-like proteins (EDEMs) were shown to be involved in this pathway but their precise role is still under investigation. Mass spectrometry analysis has contributed significantly to the characterization of protein complexes in the last years. The recent advancements in instrumentation, especially within resolution and speed can provide unique insights concerning the molecular architecture of protein-protein interactions in systems biology. Previous reports have suggested that several protein complexes in ERAD are sensitive to the extraction conditions. Indeed, whilst EDEM proteins can be recovered in most detergents, some of their partners are not solubilized, which further emphasizes the importance of the experimental setup. Here, we define such dynamic interactions of EDEM proteins by employing offline protein fractionation, nanoLC-MS/MS and describe how mass spectrometry can contribute to the characterization of such complexes, particularly within a disease context like melanoma.

Keywords

ERAD Proteomics Mass spectrometry EDEM Interactomics 

Notes

Acknowledgments

We acknowledge support for funding to the Romanian Ministry of Research and Innovation, CNCS-UEFISCDI grant PN-III-P1-1.1-PD-2016-1528 and CCCDI-UEFISCDI grant PNCDI-III-PCCDI-2018-1, PN-III-P4-ID-PCE-2016-0650. Part of this work constituted the Ph.D. thesis of Cristian V.A. Munteanu, which received financial support from European Social Fund for Sectorial Operational Program Human Resources Development 2007–2013 grant no. POSDRU/159/1.5/S/135760 and Gabriela N. Chiriţoiu, supported by Romanian Academy. All the authors were partially funded by Romanian Academy.

References

  1. 1.
    Uhlen, M., Fagerberg, L., Hallstrom, B. M., Lindskog, C., Oksvold, P., Mardinoglu, A., et al. (2015). Proteomics. Tissue-based map of the human proteome. Science, 347(6220), 1260419.PubMedGoogle Scholar
  2. 2.
    Hebert, D. N., & Molinari, M. (2007). In and out of the ER: Protein folding, quality control, degradation, and related human diseases. Physiological Reviews, 87(4), 1377–1408.PubMedGoogle Scholar
  3. 3.
    Lamriben, L., Graham, J. B., Adams, B. M., & Hebert, D. N. (2016). N-Glycan-based ER molecular chaperone and protein quality control system: The Calnexin binding cycle. Traffic, 17(4), 308–326.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Vembar, S. S., & Brodsky, J. L. (2008). One step at a time: Endoplasmic reticulum-associated degradation. Nature Reviews. Molecular Cell Biology, 9(12), 944–957.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Munteanu, C. V. (2016). Insights into functional interaction proteomics of endoplasmic reticulum associated degradation (ERAD) and antigen presentation in melanoma using mass spectrometry (p. 199). Bucureşti, Romania: Institute of Biochemistry: Romanian Academy Library.Google Scholar
  6. 6.
    Guerriero, C. J., & Brodsky, J. L. (2012). The delicate balance between secreted protein folding and endoplasmic reticulum-associated degradation in human physiology. Physiological Reviews, 92(2), 537–576.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Aridor, M. (2007). Visiting the ER: The endoplasmic reticulum as a target for therapeutics in traffic related diseases. Advanced Drug Delivery Reviews, 59(8), 759–781.PubMedGoogle Scholar
  8. 8.
    Gonzalez, D. S., Karaveg, K., Vandersall-Nairn, A. S., Lal, A., & Moremen, K. W. (1999). Identification, expression, and characterization of a cDNA encoding human endoplasmic reticulum mannosidase I, the enzyme that catalyzes the first mannose trimming step in mammalian Asn-linked oligosaccharide biosynthesis. The Journal of Biological Chemistry, 274(30), 21375–21386.PubMedGoogle Scholar
  9. 9.
    Tremblay, L. O., & Herscovics, A. (1999). Cloning and expression of a specific human alpha 1,2-mannosidase that trims Man9GlcNAc2 to Man8GlcNAc2 isomer B during N-glycan biosynthesis. Glycobiology, 9(10), 1073–1078.PubMedGoogle Scholar
  10. 10.
    Ninagawa, S., Okada, T., Sumitomo, Y., Kamiya, Y., Kato, K., Horimoto, S., et al. (2014). EDEM2 initiates mammalian glycoprotein ERAD by catalyzing the first mannose trimming step. The Journal of Cell Biology, 206(3), 347–356.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Hosokawa, N., Wada, I., Hasegawa, K., Yorihuzi, T., Tremblay, L. O., Herscovics, A., et al. (2001). A novel ER alpha-mannosidase-like protein accelerates ER-associated degradation. EMBO Reports, 2(5), 415–422.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Mast, S. W., Diekman, K., Karaveg, K., Davis, A., Sifers, R. N., & Moremen, K. W. (2005). Human EDEM2, a novel homolog of family 47 glycosidases, is involved in ER-associated degradation of glycoproteins. Glycobiology, 15(4), 421–436.PubMedGoogle Scholar
  13. 13.
    Olivari, S., Galli, C., Alanen, H., Ruddock, L., & Molinari, M. (2005). A novel stress-induced EDEM variant regulating endoplasmic reticulum-associated glycoprotein degradation. The Journal of Biological Chemistry, 280(4), 2424–2428.PubMedGoogle Scholar
  14. 14.
    Hirao, K., Natsuka, Y., Tamura, T., Wada, I., Morito, D., Natsuka, S., et al. (2006). EDEM3, a soluble EDEM homolog, enhances glycoprotein endoplasmic reticulum-associated degradation and mannose trimming. The Journal of Biological Chemistry, 281(14), 9650–9658.PubMedGoogle Scholar
  15. 15.
    Olivari, S., Cali, T., Salo, K. E., Paganetti, P., Ruddock, L. W., & Molinari, M. (2006). EDEM1 regulates ER-associated degradation by accelerating de-mannosylation of folding-defective polypeptides and by inhibiting their covalent aggregation. Biochemical and Biophysical Research Communications, 349(4), 1278–1284.PubMedGoogle Scholar
  16. 16.
    Hosokawa, N., Tremblay, L. O., Sleno, B., Kamiya, Y., Wada, I., Nagata, K., et al. (2010). EDEM1 accelerates the trimming of alpha1,2-linked mannose on the C branch of N-glycans. Glycobiology, 20(5), 567–575.PubMedGoogle Scholar
  17. 17.
    Ron, E., Shenkman, M., Groisman, B., Izenshtein, Y., Leitman, J., & Lederkremer, G. Z. (2011). Bypass of glycan-dependent glycoprotein delivery to ERAD by up-regulated EDEM1. Molecular Biology of the Cell, 22(21), 3945–3954.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Shenkman, M., Groisman, B., Ron, E., Avezov, E., Hendershot, L. M., & Lederkremer, G. Z. (2013). A shared endoplasmic reticulum-associated degradation pathway involving the EDEM1 protein for glycosylated and nonglycosylated proteins. The Journal of Biological Chemistry, 288(4), 2167–2178.PubMedGoogle Scholar
  19. 19.
    Marin, M. B., Ghenea, S., Spiridon, L. N., Chiritoiu, G. N., Petrescu, A. J., & Petrescu, S. M. (2012). Tyrosinase degradation is prevented when EDEM1 lacks the intrinsically disordered region. PLoS One, 7(8), e42998.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Lamriben, L., Oster, M. E., Tamura, T., Tian, W., Yang, Z., Clausen, H., et al. (2018). EDEM1’s mannosidase-like domain binds ERAD client proteins in a redox-sensitive manner and possesses catalytic activity. The Journal of Biological Chemistry.  https://doi.org/10.1074/jbc.RA118.004183PubMedGoogle Scholar
  21. 21.
    Tang, H. Y., Huang, C. H., Zhuang, Y. H., Christianson, J. C., & Chen, X. (2014). EDEM2 and OS-9 are required for ER-associated degradation of non-glycosylated sonic hedgehog. PLoS One, 9(6), e92164.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Oda, Y., Hosokawa, N., Wada, I., & Nagata, K. (2003). EDEM as an acceptor of terminally misfolded glycoproteins released from calnexin. Science, 299(5611), 1394–1397.PubMedGoogle Scholar
  23. 23.
    Zuber, C., Cormier, J. H., Guhl, B., Santimaria, R., Hebert, D. N., & Roth, J. (2007). EDEM1 reveals a quality control vesicular transport pathway out of the endoplasmic reticulum not involving the COPII exit sites. Proceedings of the National Academy of Sciences of the United States of America, 104(11), 4407–4412.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Tamura, T., Cormier, J. H., & Hebert, D. N. (2011). Characterization of early EDEM1 protein maturation events and their functional implications. The Journal of Biological Chemistry, 286(28), 24906–24915.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Christianson, J. C., Olzmann, J. A., Shaler, T. A., Sowa, M. E., Bennett, E. J., Richter, C. M., et al. (2011). Defining human ERAD networks through an integrative mapping strategy. Nature Cell Biology, 14(1), 93–105.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Butnaru, C. M., Chiritoiu, M. B., Chiritoiu, G. N., Petrescu, S. M., & Petrescu, A. J. (2017). Inhibition of N-glycan processing modulates the network of EDEM3 interactors. Biochemical and Biophysical Research Communications, 486(4), 978–984.PubMedGoogle Scholar
  27. 27.
    Jansen, G., Maattanen, P., Denisov, A. Y., Scarffe, L., Schade, B., Balghi, H., et al. (2012). An interaction map of endoplasmic reticulum chaperones and foldases. Molecular & Cellular Proteomics, 11(9), 710–723.Google Scholar
  28. 28.
    Kikkert, M., Doolman, R., Dai, M., Avner, R., Hassink, G., van Voorden, S., et al. (2004). Human HRD1 is an E3 ubiquitin ligase involved in degradation of proteins from the endoplasmic reticulum. The Journal of Biological Chemistry, 279(5), 3525–3534.PubMedGoogle Scholar
  29. 29.
    Christianson, J. C., Shaler, T. A., Tyler, R. E., & Kopito, R. R. (2008). OS-9 and GRP94 deliver mutant alpha1-antitrypsin to the Hrd1-SEL1L ubiquitin ligase complex for ERAD. Nature Cell Biology, 10(3), 272–282.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Saeed, M., Suzuki, R., Watanabe, N., Masaki, T., Tomonaga, M., Muhammad, A., et al. (2011). Role of the endoplasmic reticulum-associated degradation (ERAD) pathway in degradation of hepatitis C virus envelope proteins and production of virus particles. The Journal of Biological Chemistry, 286(43), 37264–37273.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Timms, R. T., Menzies, S. A., Tchasovnikarova, I. A., Christensen, L. C., Williamson, J. C., Antrobus, R., et al. (2016). Genetic dissection of mammalian ERAD through comparative haploid and CRISPR forward genetic screens. Nature Communications, 7, 11786.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Chiritoiu, G. N., Ghenea, S., & Petrescu, S. M. (2010). Anticorpi policlonali anti EDEM 2 (p. 15). Romania: OSIM.Google Scholar
  33. 33.
    Chiritoiu, G. N. (2016). Role of N- Glycosylation and functional Endoplasmic Reticulum Associated Degradation (ERAD) in modulation of tyrosinase immunogenicity (p. 183). Bucureşti, Romania: Institute of Biochemistry: Romanian Academy Library.Google Scholar
  34. 34.
    Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V., & Mann, M. (2006). In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nature Protocols, 1(6), 2856–2860.PubMedGoogle Scholar
  35. 35.
    Chiritoiu, G. N., Jandus, C., Munteanu, C. V., Ghenea, S., Gannon, P. O., Romero, P., et al. (2016). Epitope located N-glycans impair the MHC-I epitope generation and presentation. Electrophoresis, 37(11), 1448–1460.PubMedGoogle Scholar
  36. 36.
    Olsen, J. V., Schwartz, J. C., Griep-Raming, J., Nielsen, M. L., Damoc, E., Denisov, E., et al. (2009). A dual pressure linear ion trap Orbitrap instrument with very high sequencing speed. Molecular & Cellular Proteomics, 8(12), 2759–2769.Google Scholar
  37. 37.
    Eng, J. K., McCormack, A. L., & Yates, J. R. (1994). An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. Journal of the American Society for Mass Spectrometry, 5(11), 976–989.PubMedGoogle Scholar
  38. 38.
    Elias, J. E., & Gygi, S. P. (2007). Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nature Methods, 4(3), 207–214.PubMedGoogle Scholar
  39. 39.
    Kall, L., Storey, J. D., MacCoss, M. J., & Noble, W. S. (2008). Assigning significance to peptides identified by tandem mass spectrometry using decoy databases. Journal of Proteome Research, 7(1), 29–34.PubMedGoogle Scholar
  40. 40.
    Huang da, W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4(1), 44–57.PubMedGoogle Scholar
  41. 41.
    Huang da, W., Sherman, B. T., & Lempicki, R. A. (2009). Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research, 37(1), 1–13.PubMedGoogle Scholar
  42. 42.
    Dunham, W. H., Mullin, M., & Gingras, A. C. (2012). Affinity-purification coupled to mass spectrometry: Basic principles and strategies. Proteomics, 12(10), 1576–1590.PubMedGoogle Scholar
  43. 43.
    Dzieciatkowska, M., Hill, R., & Hansen, K. C. (2014). GeLC-MS/MS analysis of complex protein mixtures. Methods in Molecular Biology, 1156, 53–66.PubMedGoogle Scholar
  44. 44.
    Wang, H., Chang-Wong, T., Tang, H. Y., & Speicher, D. W. (2010). Comparison of extensive protein fractionation and repetitive LC-MS/MS analyses on depth of analysis for complex proteomes. Journal of Proteome Research, 9(2), 1032–1040.PubMedGoogle Scholar
  45. 45.
    Gilar, M., Olivova, P., Daly, A. E., & Gebler, J. C. (2005). Orthogonality of separation in two-dimensional liquid chromatography. Analytical Chemistry, 77(19), 6426–6434.PubMedGoogle Scholar
  46. 46.
    Wang, Y., Yang, F., Gritsenko, M. A., Wang, Y., Clauss, T., Liu, T., et al. (2011). Reversed-phase chromatography with multiple fraction concatenation strategy for proteome profiling of human MCF10A cells. Proteomics, 11(10), 2019–2026.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Budayeva, H. G., & Cristea, I. M. (2014). A mass spectrometry view of stable and transient protein interactions. Advances in Experimental Medicine and Biology, 806, 263–282.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Morris, J. H., Knudsen, G. M., Verschueren, E., Johnson, J. R., Cimermancic, P., Greninger, A. L., et al. (2014). Affinity purification-mass spectrometry and network analysis to understand protein-protein interactions. Nature Protocols, 9(11), 2539–2554.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Bildl, W., Haupt, A., Muller, C. S., Biniossek, M. L., Thumfart, J. O., Huber, B., et al. (2012). Extending the dynamic range of label-free mass spectrometric quantification of affinity purifications. Molecular & Cellular Proteomics, 11(2), M111 007955.Google Scholar
  50. 50.
    Kaufmann, A., & Walker, S. (2017). Comparison of linear intrascan and interscan dynamic ranges of Orbitrap and ion-mobility time-of-flight mass spectrometers. Rapid Communications in Mass Spectrometry, 31(22), 1915–1926.PubMedGoogle Scholar
  51. 51.
    Antrobus, R., & Borner, G. H. (2011). Improved elution conditions for native co-immunoprecipitation. PLoS One, 6(3), e18218.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Hubner, N. C., Bird, A. W., Cox, J., Splettstoesser, B., Bandilla, P., Poser, I., et al. (2010). Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions. The Journal of Cell Biology, 189(4), 739–754.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Kim, E. D., Sabharwal, A., Vetta, A. R., & Blanchette, M. (2010). Predicting direct protein interactions from affinity purification mass spectrometry data. Algorithms for Molecular Biology, 5, 34.PubMedGoogle Scholar
  54. 54.
    Zhang, X. F., Ou-Yang, L., Hu, X., & Dai, D. Q. (2015). Identifying binary protein-protein interactions from affinity purification mass spectrometry data. BMC Genomics, 16, 745.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Tian, B., Zhao, C., Gu, F., & He, Z. (2017). A two-step framework for inferring direct protein-protein interaction network from AP-MS data. BMC Systems Biology, 11(Suppl 4), 82.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Cristian V. A. Munteanu
    • 1
  • Gabriela N. Chiriţoiu
    • 2
  • Andrei-Jose Petrescu
    • 1
  • Ștefana M. Petrescu
    • 2
    Email author
  1. 1.Department of Bioinformatics and Structural BiochemistryInstitute of BiochemistryBucharestRomania
  2. 2.Department of Molecular Cell BiologyInstitute of BiochemistryBucharestRomania

Personalised recommendations