Advertisement

Proteome Imaging: From Classic to Modern Mass Spectrometry-Based Molecular Histology

  • Anca-Narcisa NeaguEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1140)

Abstract

In order to overcome the limitations of classic imaging in Histology during the actually era of multiomics, the multi-color “molecular microscope” by its emerging “molecular pictures” offers quantitative and spatial information about thousands of molecular profiles without labeling of potential targets. Healthy and diseased human tissues, as well as those of diverse invertebrate and vertebrate animal models, including genetically engineered species and cultured cells, can be easily analyzed by histology-directed MALDI imaging mass spectrometry. The aims of this review are to discuss a range of proteomic information emerging from MALDI mass spectrometry imaging comparative to classic histology, histochemistry and immunohistochemistry, with applications in biology and medicine, concerning the detection and distribution of structural proteins and biological active molecules, such as antimicrobial peptides and proteins, allergens, neurotransmitters and hormones, enzymes, growth factors, toxins and others. The molecular imaging is very well suited for discovery and validation of candidate protein biomarkers in neuroproteomics, oncoproteomics, aging and age-related diseases, parasitoproteomics, forensic, and ecotoxicology. Additionally, in situ proteome imaging may help to elucidate the physiological and pathological mechanisms involved in developmental biology, reproductive research, amyloidogenesis, tumorigenesis, wound healing, neural network regeneration, matrix mineralization, apoptosis and oxidative stress, pain tolerance, cell cycle and transformation under oncogenic stress, tumor heterogeneity, behavior and aggressiveness, drugs bioaccumulation and biotransformation, organism’s reaction against environmental penetrating xenobiotics, immune signaling, assessment of integrity and functionality of tissue barriers, behavioral biology, and molecular origins of diseases. MALDI MSI is certainly a valuable tool for personalized medicine and “Eco-Evo-Devo” integrative biology in the current context of global environmental challenges.

Keywords

Proteome Imaging Histology Histochemistry Immunohistochemistry Molecular histology MALDI MSI 

Abbreviations

2-D/3-D MSI

Two-dimensional/three-dimensional mass spectrometry images

ABC

Avidin-biotin complex

ABPP

Activity-based protein profiling

AD

Alzheimer’s disease

AFAI-MSI

Air flow-assisted ionization mass spectrometry imaging

APCI

Atmospheric pressure chemical ionization

APPI

Atmospheric pressure photo-ionization

BALF

Bronchoalveolar lavage fluid

BBB

Blood-brain barrier

CAFs

Cancer associated fibroblasts

CHCA

α-Cyano-4-hydroxycinnamic acid

CLS/CLSM

Confocal laser scanning microscopy

COMP

Cartilage oligomeric matrix glycoprotein

CSP

Characteristic spectral patterns

DESI/ESI

Desorption electrospray ionization/electrospray ionization

DHB

2,5-Dihydroxybenzoic acid

DIC

Differential interference contrast

DIOS

Desorption/ionization on silicon

EBC

Exhaled breath condensate

ESI

Electrospray ionization

FAIMS

High field asymmetric waveform ion mobility spectrometry

FF

Fresh-frozen

FFPE

Formalin-fixed, paraffin-embedded

FISH

Fluorescence in situ hybridization

FITC

Fluorescein isothiocyanate

FLIM

Fluorescence lifetime imaging

FRET

Fluorescence resonance energy transfer

FT-ICR

Fourier transform ion cyclotron resonance

GBL

Gamma-butyrolactone

GC

Gas chromatography

GC-MS

Gas chromatography-mass spectrometry

GFAP

Glial fibrillary acidic protein

GFP

Green fluorescent protein

GHB

Gamma-hydroxybutyric acid

GHB-Gluc

Gamma-hydroxybutyric acid glucuronide

H&E

Hematoxylin and eosin

HC

Histochemistry

HCA

Hierarchical clustering analysis

HCCA

Alpha-cyano-4-hydroxycinnamic acid

HNP

Human neutrophil peptide

HPLC

High-performance/pressure liquid chromatography

HPLC/ESI-MS

High-performance liquid chromatography/electrospray ionization-mass spectrometry

HPLC/ESI-MS/MS

High-performance liquid chromatography/electrospray ionization-tandem mass spectrometry

HPLC/TOF-MS

High-performance liquid chromatography/time-of-flight mass spectrometry

HPLC-MS

High-performance liquid chromatography mass spectrometry

HPLC-MS/MS

High-performance liquid chromatography tandem mass spectrometry

HRP

Horseradish peroxidase

HTT

Hyalinizing trabecular tumor

ICC

Immunocytochemistry

IHC

Immunohistochemistry

IMS

Ion mobility spectrometry

IR-MALDESI QMSI

Infrared matrix-assisted laser desorption electrospray ionization quantitative mass spectrometry imaging

ITO

Indium tin oxide glass microscope slide

LAESI

Laser ablation electrospray ionization mass spectrometry

LA-ICP-MSI

Laser ablation inductively coupled plasma mass spectrometry imaging

LAMMA

Laser microprobe mass analysis

LC

Liquid chromatography

LCM

Laser-capture microdissection

LC-MS

Liquid chromatography-mass spectrometry

LC-MS/MS

Liquid chromatography-tandem mass spectrometry

LESA

Liquid extraction surface analysis

LMJ-SSP

Liquid microjunction surface sampling

LSEs

Living skin equivalents

m/z

Mass/charge

MALD-ESI

Matrix-assisted laser desorption electrospray ionization

MALDI

Matrix-assisted laser desorption/ionization

MALDI-FTICR-MS

Matrix-assisted laser desorption/ionization–Fourier transform ion cyclotron resonance–mass spectrometry

MALDI-FTICR-MSI

Matrix-assisted laser desorption/ionization–Fourier transform ion cyclotron resonance–mass spectrometry imaging

MALDI-IMS-MSI

Matrix-assisted laser desorption/ionization-ion mobility separation-mass spectrometry imaging

MALDI-MS

Matrix-assisted laser desorption/ionization mass spectrometry

MALDI-MSI

Matrix-assisted laser desorption/ionization mass spectrometry imaging

MALDI-TOF-MS

Matrix-assisted laser desorption/ionization–time-of-flight–mass spectrometry

MALDI-TOF-MSI

Matrix-assisted laser desorption/ionization–time-of-flight–mass spectrometry imaging

mMALDI MSI

Multigrid MALDI MSI

MRI

Magnetic resonance imaging

MS

Mass spectrometry

MS/MS

Tandem mass spectrometry

MSI

Mass spectrometry imaging

MudPIT

Multidimensional protein identification technology

MyHC

Myosin heavy chain

NALDI

Nano-assisted laser desorption ionization

NIMS

Nanostructure-initiator mass spectrometry

NSOM

Near-field scanning optical microscopy

PCA

Principal component analysis

PET

Positron emission tomography

PPI

Protein-protein interactions

PTC

Papillary thyroid carcinoma

QMSI

Quantitative mass spectrometry imaging

REIMS

Rapid evaporative ionization mass spectrometry

ROIs

Regions of interests

SA

Sinapinic acid

SALDI

Surface-assisted laser desorption/ionization

SDCM

Spinning disk confocal microscopy

SELDI

Surface-enhanced laser desorption/ionization

SELDI-MS

Surface-enhanced laser desorption/ionization-mass spectrometry

SEM

Scanning electron microscopy

SIMS

Secondary ion mass spectrometry

SMALDI

Scanning microprobe MALDI

SPR

Surface plasmon resonance

Tag-Mass MSI

Targeted mass spectrometric imaging

TEM

Transmission electron microscopy

TIRF

Total internal reflection fluorescence

TMAs

Tissue microarrays

TOF

Time-of-flight

t-SNE

t-Distributed stochastic neighbor embedding

UHPLC

Ultra-high-performance liquid chromatography

UHPLC-MS/MS

Ultra-high-performance liquid chromatography tandem mass spectrometry

References

  1. 1.
    Ur Rehman, H., Azam, N., Yao, J., & Benso, A. (2017). A three-way approach for protein function classification. PLoS One, 12(2), e0171702.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Milo, R. (2013). What is the total number of protein molecules per cell volume? A call to rethink some published values. BioEssays, 35(12), 1050–1055.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Lukeš, T., Glatzová, D., Kvíčalová, Z., Levet, F., Benda, A., Letschert, S., et al. (2017). Quantifying protein densities on cell membranes using super-resolution optical fluctuation imaging. Nature Communications, 8(1), 1731.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Li, J., Akbani, R., Zhao, W., Lu, Y., Weinstein, J. N., Mills, G. B., et al. (2017). Explore, visualize, and analyze functional Cancer proteomic data using the cancer proteome atlas. Cancer Research, 77(21), e51–e54.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Shruthi, B. S., Vinodhkumar, P., & Selvamani. (2016). Proteomics: A new perspective for cancer. Advanced Biomedical Research, 5, 67.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Manzoni, C., Kia, D. A., Vandrovcova, J., Hardy, J., Wood, N. W., Lewis, P. A., et al. (2018). Genome, transcriptome and proteome: The rise of omics data and their integration in biomedical sciences. Briefings in Bioinformatics, 19(2), 286–302.PubMedGoogle Scholar
  7. 7.
    Harper, J. W., & Bennett, E. J. (2016). Proteome complexity and the forces that drive proteome imbalance. Nature, 537(7620), 328–338.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Amaral, A., Castillo, J., Ramalho-Santos, J., & Oliva, R. (2014). The combined human sperm proteome: Cellular pathways and implications for basic and clinical science. Human Reproduction Update, 20(1), 40–62.PubMedGoogle Scholar
  9. 9.
    Bryk, A. H., & Wiśniewski, J. R. (2017). Quantitative analysis of human red blood cell proteome. Journal of Proteome Research, 16(8), 2752–2761.PubMedGoogle Scholar
  10. 10.
    Tomazella, G. G., da Silva, I., Laure, H. J., Rosa, J. C., Chammas, R., Wiker, H. G., et al. (2009). Proteomic analysis of total cellular proteins of human neutrophils. Proteome Science, 7(1), 32.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Slany, A., Paulitschke, V., Haudek-Prinz, V., Meshcheryakova, A., & Gerner, C. (2014). Determination of cell type-specific proteome signatures of primary human leukocytes, endothelial cells, keratinocytes, hepatocytes, fibroblasts and melanocytes by comparative proteome profiling. Electrophoresis, 35(10), 1428–1438.PubMedGoogle Scholar
  12. 12.
    Uhlén, M., Fagerberg, L., Hallström, B. M., Lindskog, C., Oksvold, P., Mardinoglu, A., et al. (2015). Tissue-based map of the human proteome. Science, 347(6220), 1260419.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Barbosa, E. B., Vidotto, A., Polachini, G. M., Henrique, T., de Marqui, A. B. T., & Helena Tajara, E. (2012). Proteomics: Methodologies and applications to the study of human diseases. Revista da Associação Médica Brasileira (English Edition), 58(3), 366–375.Google Scholar
  14. 14.
    Sallam, R. M. (2015). Proteomics in cancer biomarkers discovery: Challenges and applications. Disease Markers, 2015, 12.Google Scholar
  15. 15.
    Jimenez, C. R., Zhang, H., Kinsinger, C. R., & Nice, E. C. (2018). The cancer proteomic landscape and the HUPO Cancer proteome project. Clinical Proteomics, 15, 4.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Lundström, S. L., Zhang, B., Rutishauser, D., Aarsland, D., & Zubarev, R. A. (2017). SpotLight proteomics: Uncovering the hidden blood proteome improves diagnostic power of proteomics. Scientific Reports, 7, 41929.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Anderson, N. L., Polanski, M., Pieper, R., Gatlin, T., Tirumalai, R. S., Conrads, T. P., et al. (2004). The human plasma proteome. A nonredundant list developed by combination of four separate sources. Molecular and Cellular Proteomics, 3(4), 311–326.PubMedGoogle Scholar
  18. 18.
    Geyer, P. E., Kulak, N. A., Pichler, G., Holdt, L. M., Teupser, D., & Mann, M. (2016). Plasma proteome profiling to assess human health and disease. Cell Systems, 2(3), 185–195.PubMedGoogle Scholar
  19. 19.
    Castagnola, M., Cabras, T., Iavarone, F., Fanali, C., Nemolato, S., Peluso, G., et al. (2012). The human salivary proteome: A critical overview of the results obtained by different proteomic platforms. Expert Review of Proteomics, 9(1), 33–46.PubMedGoogle Scholar
  20. 20.
    Sivadasan, P., Kumar Gupta, M., Sathe, G. J., Balakrishnan, L., Palit, P., Gowda, H., et al. (2015). Data from human salivary proteome - A resource of potential biomarkers for oral cancer. Data in Brief, 4, 374–378.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Wormwood, K. L., Aslebagh, R., Channaveerappa, D., Dupree, E. J., Borland, M. M., Ryan, J. P., et al. (2015). Salivary proteomics and biomarkers in neurology and psychiatry. Proteomics. Clinical Applications, 9(9–10), 899–906.PubMedGoogle Scholar
  22. 22.
    Ngounou Wetie, A. G., Wormwood, K. L., Russell, S., Ryan, J. P., Darie, C. C., & Woods, A. G. (2015). A pilot proteomic analysis of salivary biomarkers in autism Spectrum disorder. Autism Research, 8(3), 338–350.Google Scholar
  23. 23.
    Grassl, N., Kulak, N. A., Pichler, G., Geyer, P. E., Jung, J., Schubert, S., et al. (2016). Ultra-deep and quantitative saliva proteome reveals dynamics of the oral microbiome. Genome Medicine, 8(1), 44.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Castagnola, M., Scarano, E., Passali, G. C., Messana, I., Cabras, T., Iavarone, F., et al. (2017). Salivary biomarkers and proteomics: Future diagnostic and clinical utilitiesBiomarkers e proteomica salivari: Prospettive future cliniche e diagnostiche. Acta Otorhinolaryngologica Italica: organo ufficiale della Societa italiana di otorinolaringologia e chirurgia cervico-facciale, 37(2), 94–101.Google Scholar
  25. 25.
    Iadarola, P., & Viglio, S. (2017). Spit it out! How could the sputum proteome aid clinical research into pulmonary diseases? Expert Review of Proteomics, 14(5), 391–393.PubMedGoogle Scholar
  26. 26.
    Burg, D., Schofield, J. P. R., Brandsma, J., Staykova, D., Folisi, C., Bansal, A., et al. (2018). Large-scale label-free quantitative mapping of the sputum proteome. Journal of Proteome Research, 17(6), 2072–2091.PubMedGoogle Scholar
  27. 27.
    Zhou, L., Zhao, S. Z., Koh, S. K., Chen, L., Vaz, C., Tanavde, V., et al. (2012). In-depth analysis of the human tear proteome. Journal of Proteomics, 75(13), 3877–3885.PubMedGoogle Scholar
  28. 28.
    Tang, Q., Zhang, C., Wu, X., Duan, W., Weng, W., Feng, J., et al. (2018). Comprehensive proteomic profiling of patients’ tears identifies potential biomarkers for the traumatic vegetative state. Neuroscience Bulletin, 34, 1–13.Google Scholar
  29. 29.
    Beasley-Green, A. (2016). Urine proteomics in the era of mass spectrometry. International Neurourology Journal, 20(Suppl 2), S70–S75.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Zhao, M., Li, M., Yang, Y., Guo, Z., Sun, Y., Shao, C., et al. (2017). A comprehensive analysis and annotation of human normal urinary proteome. Scientific Reports, 7(1), 3024.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Csősz, É., Emri, G., Kalló, G., Tsaprailis, G., & Tőzsér, J. (2015). Highly abundant defense proteins in human sweat as revealed by targeted proteomics and label-free quantification mass spectrometry. Journal of the European Academy of Dermatology and Venereology, 29(10), 2024–2031.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Yu, Y., Prassas, I., Muytjens, C. M. J., & Diamandis, E. P. (2017). Proteomic and peptidomic analysis of human sweat with emphasis on proteolysis. Journal of Proteomics, 155, 40–48.PubMedGoogle Scholar
  33. 33.
    Aslebagh, R., Channaveerappa, D., Arcaro, K. F., & Darie, C. C. (2018). Proteomics analysis of human breast milk to assess breast cancer risk. Electrophoresis, 39(4), 653–665.PubMedGoogle Scholar
  34. 34.
    Barbhuiya, M. A., Sahasrabuddhe, N. A., Pinto, S. M., Muthusamy, B., Singh, T. D., Nanjappa, V., et al. (2011). Comprehensive proteomic analysis of human bile. Proteomics, 11(23), 4443–4453.PubMedGoogle Scholar
  35. 35.
    Schutzer, S. E., Liu, T., Natelson, B. H., Angel, T. E., Schepmoes, A. A., Purvine, S. O., et al. (2010). Establishing the proteome of normal human cerebrospinal fluid. PLoS One, 5(6), e10980.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Bhattacharjee, M., Balakrishnan, L., Renuse, S., Advani, J., Goel, R., Sathe, G., et al. (2016). Synovial fluid proteome in rheumatoid arthritis. Clinical Proteomics, 13, 12–12.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Maud, L., Caroline, M.-D., Florence, C., Alexandra, K., Christophe, B., Yves, V., et al. (2018). Proteomic characterization of human exhaled breath condensate. Journal of Breath Research, 12(2), 021001.Google Scholar
  38. 38.
    Hmmier, A., O’Brien, M. E., Lynch, V., Clynes, M., Morgan, R., & Dowling, P. (2017). Proteomic analysis of bronchoalveolar lavage fluid (BALF) from lung cancer patients using label-free mass spectrometry. BBA Clinical, 7, 97–104.Google Scholar
  39. 39.
    Brunoro, G. V. F., Carvalho, P. C., da Silva Ferreira, A. T., Perales, J., Valente, R. H., de Moura Gallo, C. V., et al. (2015). Proteomic profiling of nipple aspirate fluid (NAF): Exploring the complementarity of different peptide fractionation strategies. Journal of Proteomics, 117, 86–94.PubMedGoogle Scholar
  40. 40.
    Liu, X., Song, Y., Guo, Z., Sun, W., & Liu, J. (2018). A comprehensive profile and inter-individual variations analysis of the human normal amniotic fluid proteome. Journal of Proteomics, 192, 1–9.PubMedGoogle Scholar
  41. 41.
    Borgdorff, H., Gautam, R., Armstrong, S. D., Xia, D., Ndayisaba, G. F., van Teijlingen, N. H., et al. (2015). Cervicovaginal microbiome dysbiosis is associated with proteome changes related to alterations of the cervicovaginal mucosal barrier. Mucosal Immunology, 9, 621.PubMedGoogle Scholar
  42. 42.
    Shen, X., Liu, X., Zhu, P., Zhang, Y., Wang, J., Wang, Y., et al. (2017). Proteomic analysis of human follicular fluid associated with successful in vitro fertilization. Reproductive Biology and Endocrinology, 15(1), 58.PubMedGoogle Scholar
  43. 43.
    Dutta, S., Chanda, A., Kalita, B., Islam, T., Patra, A., & Mukherjee, A. K. (2017). Proteomic analysis to unravel the complex venom proteome of eastern India Naja naja: Correlation of venom composition with its biochemical and pharmacological properties. Journal of Proteomics, 156, 29–39.PubMedGoogle Scholar
  44. 44.
    Brinkman, D. L., Jia, X., Potriquet, J., Kumar, D., Dash, D., Kvaskoff, D., et al. (2015). Transcriptome and venom proteome of the box jellyfish Chironex fleckeri. BMC Genomics, 16(1), 407–407.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Adeola, H. A., Wyk, J. C., Arowolo, A., Ngwanya, R. M., Mkentane, K., & Khumalo, N. P. (2018). Emerging diagnostic and therapeutic potentials of human hair proteomics. Proteomics. Clinical Applications, 12(2), 1700048.Google Scholar
  46. 46.
    Adav, S. S., Subbaiaih, R. S., Kerk, S. K., Lee, A. Y., Lai, H. Y., Ng, K. W., et al. (2018). Studies on the proteome of human hair - Identification of histones and Deamidated keratins. Scientific Reports, 8(1), 1599.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Rice, R. H., Xia, Y., Alvarado, R. J., & Phinney, B. S. (2010). Proteomic analysis of human nail plate. Journal of Proteome Research, 9(12), 6752–6758.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Sawafuji, R., Cappellini, E., Nagaoka, T., Fotakis, A. K., Jersie-Christensen, R. R., Olsen, J. V., et al. (2017). Proteomic profiling of archaeological human bone. Royal Society Open Science, 4(6), 161004.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Jin, P., Wang, K., Huang, C., & Nice, E. C. (2017). Mining the fecal proteome: From biomarkers to personalised medicine. Expert Review of Proteomics, 14(5), 445–459.PubMedGoogle Scholar
  50. 50.
    Huynh, C., Brunelle, E., Halámková, L., Agudelo, J., & Halámek, J. (2015). Forensic identification of gender from fingerprints. Analytical Chemistry, 87(22), 11531–11536.PubMedGoogle Scholar
  51. 51.
    Han, X., Aslanian, A., & Yates, J. R. (2008). Mass spectrometry for proteomics. Current Opinion in Chemical Biology, 12(5), 483–490.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Raza, K. (2017). Protein features identification for machine learning-based prediction of protein-protein interactions. bioRxiv.  https://doi.org/10.1101/137257
  53. 53.
    Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., et al. (2000). Gene ontology: Tool for the unification of biology. The gene ontology consortium. Nature Genetics, 25(1), 25–29.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Horgan, R. P., & Kenny, L. C. (2011). ‘Omic’ technologies: Genomics, transcriptomics, proteomics and metabolomics. The Obstetrician & Gynaecologist, 13(3), 189–195.Google Scholar
  55. 55.
    Tsai, K.-C., Jian, J.-W., Yang, E.-W., Hsu, P.-C., Peng, H.-P., Chen, C.-T., et al. (2012). Prediction of carbohydrate binding sites on protein surfaces with 3-dimensional probability density distributions of interacting atoms. PLoS One, 7(7), e40846.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Ngounou Wetie, A. G., Sokolowska, I., Woods, A. G., Roy, U., Deinhardt, K., & Darie, C. C. (2014). Protein–protein interactions: Switch from classical methods to proteomics and bioinformatics-based approaches. Cellular and Molecular Life Sciences, 71(2), 205–228.PubMedGoogle Scholar
  57. 57.
    Luck, K., Sheynkman, G. M., Zhang, I., & Vidal, M. (2017). Proteome-scale human Interactomics. Trends in Biochemical Sciences, 42(5), 342–354.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Gilany, K., Lakpour, N., Vafakhah, M., & Sadeghi, M. R. (2011). The profile of human sperm proteome; A mini-review. Journal of Reproduction & Infertility, 12(3), 193–199.Google Scholar
  59. 59.
    Santos, A. L., & Lindner, A. B. (2017). Protein posttranslational modifications: Roles in aging and age-related disease. Oxidative Medicine and Cellular Longevity, 2017, 5716409.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Ponomarenko, E. A., Poverennaya, E. V., Ilgisonis, E. V., Pyatnitskiy, M. A., Kopylov, A. T., Zgoda, V. G., et al. (2016). The size of the human proteome: The width and depth. International Journal of Analytical Chemistry, 2016, 7436849.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Theillet, F.-X., Binolfi, A., Frembgen-Kesner, T., Hingorani, K., Sarkar, M., Kyne, C., et al. (2014). Physicochemical properties of cells and their effects on intrinsically disordered proteins (IDPs). Chemical Reviews, 114(13), 6661–6714.PubMedCentralGoogle Scholar
  62. 62.
    Christians, U., Klawitter, J., Klepacki, J., & Klawitter, J. (2017). Chapter Four - The role of proteomics in the study of kidney diseases and in the development of diagnostic tools. In C. L. Edelstein (Ed.), Biomarkers of kidney disease (2nd ed., pp. 119–223). Boston: Academic Press.Google Scholar
  63. 63.
    Kim, M.-S., Pinto, S. M., Getnet, D., Nirujogi, R. S., Manda, S. S., Chaerkady, R., et al. (2014). A draft map of the human proteome. Nature, 509, 575.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Wilhelm, M., Schlegl, J., Hahne, H., Gholami, A. M., Lieberenz, M., Savitski, M. M., et al. (2014). Mass-spectrometry-based draft of the human proteome. Nature, 509, 582.PubMedGoogle Scholar
  65. 65.
    Longuespée, R., Casadonte, R., Kriegsmann, M., Pottier, C., Picard de Muller, G., Delvenne, P., et al. (2016). MALDI mass spectrometry imaging: A cutting-edge tool for fundamental and clinical histopathology. Proteomics. Clinical Applications, 10(7), 701–719.PubMedGoogle Scholar
  66. 66.
    Wang Kevin, C., & Chang Howard, Y. (2018). Epigenomics. Circulation Research, 122(9), 1191–1199.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Crecelius, A. C., Schubert, U. S., & von Eggeling, F. (2015). MALDI mass spectrometric imaging meets “omics”: Recent advances in the fruitful marriage. Analyst, 140(17), 5806–5820.PubMedGoogle Scholar
  68. 68.
    Thomas, T., Gilbert, J., & Meyer, F. (2012). Metagenomics - a guide from sampling to data analysis. Microbial Informatics and Experimentation, 2(1), 3–3.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Roux, S., Brum, J. R., Dutilh, B. E., Sunagawa, S., Duhaime, M. B., Loy, A., et al. (2016). Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature, 537, 689.PubMedGoogle Scholar
  70. 70.
    Braicu, C., Mehterov, N., Vladimirov, B., Sarafian, V., Nabavi, S., Atanasov, A., et al. (2017). Nutrigenomics in cancer: Revisiting the effects of natural compounds. Seminars in Cancer Biology, 46, 84–106.PubMedGoogle Scholar
  71. 71.
    Lavertu, A., McInnes, G., Daneshjou, R., Whirl-Carrillo, M., Klein, T. E., & Altman, R. B. (2018). Pharmacogenomics and big genomic data: From lab to clinic and back again. Human Molecular Genetics, 27(R1), R72–R78.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Chan, C. X., & Ragan, M. A. (2013). Next-generation phylogenomics. Biology Direct, 8(1), 3.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Hathout, Y. (2007). Approaches to the study of the cell secretome. Expert Review of Proteomics, 4(2), 239–248.PubMedGoogle Scholar
  74. 74.
    Romanova, E. V., & Sweedler, J. V. (2015). Peptidomics for the discovery and characterization of neuropeptides and hormones. Trends in Pharmacological Sciences, 36(9), 579–586.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Liu, Y., & Chance, M. R. (2014). Integrating phosphoproteomics in systems biology. Computational and Structural Biotechnology Journal, 10(17), 90–97.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Hogrebe, A., von Stechow, L., Bekker-Jensen, D. B., Weinert, B. T., Kelstrup, C. D., & Olsen, J. V. (2018). Benchmarking common quantification strategies for large-scale phosphoproteomics. Nature Communications, 9(1), 1045.PubMedPubMedCentralGoogle Scholar
  77. 77.
    de Oliveira, D. N., de Bona Sartor, S., Ferreira, M. S., & Catharino, R. R. (2013). Cosmetic analysis using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Materials (Basel Switzerland), 6(3), 1000–1010.Google Scholar
  78. 78.
    Becker, J. S. (2013). Imaging of metals in biological tissue by laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS): state of the art and future developments. Journal of Mass Spectrometry, 48(2), i.Google Scholar
  79. 79.
    Wolinsky, H. (2010). History in a single hair. EMBO Reports, 11(6), 427–430.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Altuntaş, E., & Schubert, U. S. (2014). “Polymeromics”: Mass spectrometry based strategies in polymer science toward complete sequencing approaches: A review. Analytica Chimica Acta, 808, 56–69.PubMedGoogle Scholar
  81. 81.
    Houle, D., Govindaraju, D. R., & Omholt, S. (2010). Phenomics: The next challenge. Nature Reviews Genetics, 11, 855.PubMedGoogle Scholar
  82. 82.
    Fornito, A., & Bullmore, E. T. (2015). Connectomics: A new paradigm for understanding brain disease. European Neuropsychopharmacology, 25(5), 733–748.PubMedGoogle Scholar
  83. 83.
    Shachuan, F., Zhou, L., Huang, C., Xie, K., & Nice, E. (2015). Interactomics: Toward protein function and regulation. Expert Review of Proteomics, 12(1), 37–60.Google Scholar
  84. 84.
    Nalisnik, M., Amgad, M., Lee, S., Halani, S. H., Velazquez Vega, J. E., Brat, D. J., et al. (2017). Interactive phenotyping of large-scale histology imaging data with HistomicsML. Scientific Reports, 7(1), 14588.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Dong, Y., Li, B., & Aharoni, A. (2016). More than Pictures: When MS imaging meets histology. Trends in Plant Science, 21(8), 686–698.PubMedGoogle Scholar
  86. 86.
    Gustafsson, J. O. R., Oehler, M. K., Ruszkiewicz, A., McColl, S. R., & Hoffmann, P. (2011). MALDI imaging mass spectrometry (MALDI-IMS)—Application of spatial proteomics for ovarian Cancer classification and diagnosis. International Journal of Molecular Sciences, 12(1), 773–794.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Pelaia, G., Terracciano, R., Vatrella, A., Gallelli, L., Busceti, M. T., Calabrese, C., et al. (2014). Application of proteomics and peptidomics to COPD. BioMed Research International, 2014, 764581.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Roberts, A. M., Ward, C. C., & Nomura, D. K. (2017). Activity-based protein profiling for mapping and pharmacologically interrogating proteome-wide ligandable hotspots. Current Opinion in Biotechnology, 43, 25–33.PubMedGoogle Scholar
  89. 89.
    Joshi, S., Tiwari, A. K., Mondal, B., & Sharma, A. (2011). Oncoproteomics. Clinica Chimica Acta, 412(3), 217–226.Google Scholar
  90. 90.
    Abu-Asab, M., Chaouchi, M., & Amri, H. (2006). Phyloproteomics: What phylogenetic analysis reveals about serum proteomics. Cancer Research, 66(8 Suppl), 672.Google Scholar
  91. 91.
    Nesvizhskii, A. I. (2014). Proteogenomics: Concepts, applications and computational strategies. Nature Methods, 11, 1114.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Barbieri, R., Guryev, V., Brandsma, C.-A., Suits, F., Bischoff, R., & Horvatovich, P. (2016). Proteogenomics: Key driver for clinical discovery and personalized medicine. In Proteogenomics (pp. 21–47). Cham: Springer.Google Scholar
  93. 93.
    Wilmes, P., Heintz-Buschart, A., & Bond, P. L. (2015). A decade of metaproteomics: Where we stand and what the future holds. Proteomics, 15(20), 3409–3417.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Casanovas, A., Sprenger, R. R., Tarasov, K., Ruckerbauer, D. E., Hannibal-Bach, H. K., Zanghellini, J., et al. (2015). Quantitative analysis of proteome and Lipidome dynamics reveals functional regulation of global lipid metabolism. Chemistry & Biology, 22(3), 412–425.Google Scholar
  95. 95.
    Jain, K. (2004). Role of pharmacoproteomics in the development of personalized medicine. Pharmacogenomics, 5(3), 331–336.PubMedGoogle Scholar
  96. 96.
    Cleland, T., & Schroeter, E. (2018). A comparison of common mass spectrometry approaches for paleoproteomics. Journal of Proteome Research, 17, 936–945.PubMedGoogle Scholar
  97. 97.
    Heeren, R. M. A. (2005). Proteome imaging: A closer look at life’s organization. Proteomics, 5(17), 4316–4326.PubMedGoogle Scholar
  98. 98.
    Schwamborn, K. (2017). Chapter One - The importance of histology and pathology in mass spectrometry imaging. In R. R. Drake & L. A. McDonnell (Eds.), Advances in cancer research (pp. 1–26). Boston: Academic Press.Google Scholar
  99. 99.
    Lowe, J. S., & Anderson, P. G. (2015). Chapter 1 - Histology. In J. S. Lowe & P. G. Anderson (Eds.), Stevens & Lowe’s Human histology (4th ed., pp. 1–10). Philadelphia: Mosby.Google Scholar
  100. 100.
    Alturkistani, H. A., Tashkandi, F. M., & Mohammedsaleh, Z. M. (2016). Histological stains: A literature review and case study. Global Journal of Health Science, 8(3), 72–79.Google Scholar
  101. 101.
    Müllauer, L. (2017). Milestones in pathology-From histology to molecular biology. Memo, 10(1), 42–45.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Pellicciari, C. (2015). Histochemistry in biology and medicine: A message from the citing journals. European Journal of Histochemistry, 59(4), 2610.PubMedGoogle Scholar
  103. 103.
    Dubbink, H. J., Deans, Z. C., Tops, B. B. J., van Kemenade, F. J., Koljenović, S., van Krieken, H. J. M., et al. (2014). Next generation diagnostic molecular pathology: Critical appraisal of quality assurance in Europe. Molecular Oncology, 8(4), 830–839.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Kurreck, A., Vandergrift, L. A., Fuss, T. L., Habbel, P., Agar, N. Y. R., & Cheng, L. L. (2017). Prostate cancer diagnosis and characterization with mass spectrometry imaging. Prostate Cancer and Prostatic Diseases.  https://doi.org/10.1038/s41391-017-0011-zPubMedPubMedCentralGoogle Scholar
  105. 105.
    Shariatgorji, M., Svenningsson, P., & Andrén, P. E. (2014). Mass spectrometry imaging, an emerging Technology in Neuropsychopharmacology. Neuropsychopharmacology, 39(1), 34–49.PubMedGoogle Scholar
  106. 106.
    Gessel, M. M., Norris, J. L., & Caprioli, R. M. (2014). MALDI imaging mass spectrometry: Spatial molecular analysis to enable a new age of discovery. Journal of Proteomics, 107, 71–82.PubMedGoogle Scholar
  107. 107.
    Norris, J. L., & Caprioli, R. M. (2013). Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chemical Reviews, 113(4), 2309–2342.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Rémi, L., Maximilien, F., Charles, P., Florence, Q.-C., Marie-Alice, M., Dominique, B., et al. (2014). Tissue proteomics for the next decade? Towards a molecular dimension in histology. OMICS: A Journal of Integrative Biology, 18(9), 539–552.Google Scholar
  109. 109.
    Prentice, B. M., Caprioli, R. M., & Vuiblet, V. (2017). Label-free molecular imaging of the kidney. Kidney International, 92(3), 580–598.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Grüner, B. M., Hahne, H., Mazur, P. K., Trajkovic-Arsic, M., Maier, S., Esposito, I., et al. (2012). MALDI imaging mass spectrometry for in situ proteomic analysis of preneoplastic lesions in pancreatic cancer. PLoS One, 7(6), e39424.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Li, C., Li, Z., Tuo, Y., Ma, D., Shi, Y., Zhang, Q., et al. (2017). MALDI-TOF MS as a novel tool for the estimation of postmortem interval in liver tissue samples. Scientific Reports, 7, 4887.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Longuespée, R., Casadonte, R., Schwamborn, K., Reuss, D., Kazdal, D., Kriegsmann, K., et al. (2018). Proteomics in pathology. Proteomics, 18(2), 1700361.Google Scholar
  113. 113.
    Jin, P., Lan, J., Wang, K., Baker, M. S., Huang, C., & Nice, E. C. (2018). Pathology, proteomics and the pathway to personalised medicine. Expert Review of Proteomics, 15(3), 231–243.PubMedGoogle Scholar
  114. 114.
    Jones, E. A., Schmitz, N., Waaijer, C. J. F., Frese, C. K., van Remoortere, A., van Zeijl, R. J. M., et al. (2013). Imaging mass spectrometry-based molecular histology differentiates microscopically identical and heterogeneous tumors. Journal of Proteome Research, 12(4), 1847–1855.PubMedGoogle Scholar
  115. 115.
    Chaurand, P., Sanders, M. E., Jensen, R. A., & Caprioli, R. M. (2004). Proteomics in diagnostic pathology: Profiling and imaging proteins directly in tissue sections. The American Journal of Pathology, 165(4), 1057–1068.PubMedPubMedCentralGoogle Scholar
  116. 116.
    Koga, D., Kusumi, S., Shodo, R., Dan, Y., & Ushiki, T. (2015). High-resolution imaging by scanning electron microscopy of semithin sections in correlation with light microscopy. Microscopy, 64(6), 387–394.PubMedGoogle Scholar
  117. 117.
    Kiernan, J. A. (2008). Histological and histochemical methods: Theory and practice. Banbury: Scion.Google Scholar
  118. 118.
    Bolt, M. (2017). Glass: The eye of science. International Journal of Applied Glass Science, 8(1), 4–22.Google Scholar
  119. 119.
    Li, Y., Li, N., Yu, X., Huang, K., Zheng, T., Cheng, X., et al. (2018). Hematoxylin and eosin staining of intact tissues via delipidation and ultrasound. Scientific Reports, 8(1), 12259.PubMedPubMedCentralGoogle Scholar
  120. 120.
    Rae Buchberger, A., DeLaney, K., Johnson, J., & Li, L. (2018). Mass spectrometry imaging: A review of emerging advancements and future insights. Analytical Chemistry, 90(1), 240–265.Google Scholar
  121. 121.
    Iseki, Y., Shibutani, M., Maeda, K., Nagahara, H., Fukuoka, T., Matsutani, S., et al. (2018). A new method for evaluating tumor-infiltrating lymphocytes (TILs) in colorectal cancer using hematoxylin and eosin (H-E)-stained tumor sections. PLoS One, 13(4), e0192744.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Lahiani, A., Klaiman, E., & Grimm, O. (2018). Enabling histopathological annotations on immunofluorescent images through virtualization of hematoxylin and eosin. Journal of Pathology Informatics, 9(1), 1.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Rao, R. S., Patil, S., Majumdar, B., & Oswal, R. G. (2015). Comparison of special stains for keratin with routine hematoxylin and eosin stain. Journal of International Oral Health, 7(3), 1–5.PubMedGoogle Scholar
  124. 124.
    Oostendorp, C., Uijtdewilligen, P. J. E., Versteeg, E. M., Hafmans, T. G., van den Bogaard, E. H., de Jonge, P. K. J. D., et al. (2016). Visualisation of newly synthesised collagen in vitro and in vivo. Scientific Reports, 6, 18780.PubMedPubMedCentralGoogle Scholar
  125. 125.
    Osman, O. S., Selway, J. L., Harikumar, P. E., Stocker, C. J., Wargent, E. T., Cawthorne, M. A., et al. (2013). A novel method to assess collagen architecture in skin. BMC Bioinformatics, 14, 260.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Bird, B., & Rowlette, J. (2017). A protocol for rapid, label-free histochemical imaging of fibrotic liver. Analyst, 142(8), 1179–1184.PubMedGoogle Scholar
  127. 127.
    de Jong, S., van Veen, T. A. B., de Bakker, J. M. T., & van Rijen, H. V. M. (2012). Monitoring cardiac fibrosis: A technical challenge. Netherlands Heart Journal, 20(1), 44–48.PubMedGoogle Scholar
  128. 128.
    Marcos-Garcés, V., Molina Aguilar, P., Bea Serrano, C., García Bustos, V., Benavent Seguí, J., Ferrández Izquierdo, A., et al. (2014). Age-related dermal collagen changes during development, maturation and ageing - A morphometric and comparative study. Journal of Anatomy, 225(1), 98–108.PubMedPubMedCentralGoogle Scholar
  129. 129.
    Krishna, M. (2013). Role of special stains in diagnostic liver pathology. Clinical Liver Disease, 2(S1), S8–S10.PubMedPubMedCentralGoogle Scholar
  130. 130.
    Chen, Y., Yu, Q., & Xu, C.-B. (2017). A convenient method for quantifying collagen fibers in atherosclerotic lesions by ImageJ software (Vol. 10, pp. 14927–14935).Google Scholar
  131. 131.
    Harvey, A., Cole, L. M., Day, R., Bartlett, M., Warwick, J., Bojar, R., et al. (2016). MALDI-MSI for the analysis of a 3D tissue-engineered psoriatic skin model. Proteomics, 16(11–12), 1718–1725.PubMedPubMedCentralGoogle Scholar
  132. 132.
    Segnani, C., Ippolito, C., Antonioli, L., Pellegrini, C., Blandizzi, C., Dolfi, A., et al. (2015). Histochemical detection of collagen fibers by sirius red/fast green is more sensitive than van Gieson or sirius red alone in normal and inflamed rat colon. PLoS One, 10(12), e0144630.PubMedPubMedCentralGoogle Scholar
  133. 133.
    Bhutda, S., Surve, M. V., Anil, A., Kamath, K. G., Singh, N., Modi, D., et al. (2017). Histochemical staining of collagen and identification of its subtypes by picrosirius red dye in mouse reproductive tissues. Bio-protocol, 7(21), e2592.Google Scholar
  134. 134.
    Winkler, M., Shoa, G., Tran, S. T., Xie, Y., Thomasy, S., Raghunathan, V. K., et al. (2015). A comparative study of vertebrate corneal structure: The evolution of a refractive Lens. Investigative Ophthalmology & Visual Science, 56(4), 2764–2772.Google Scholar
  135. 135.
    Neagu, A.-N., & Petraru, O. M. (2015). “Aquatic” vs. “terrestrial” eye design. A functional ecomorphological approach. Analele Stiintifice Universitatii Al. I. Cuza Iasi Seria Biologie Animala, LXI, 101–115.Google Scholar
  136. 136.
    Ryu, S., Pepper, R. E., Nagai, M., & France, D. C. (2016). Vorticella: A protozoan for bio-inspired engineering. Micromachines, 8(1), 4.PubMedCentralGoogle Scholar
  137. 137.
    Wassarman, P. M. (2008). Zona pellucida glycoproteins. The Journal of Biological Chemistry, 283(36), 24285–24289.PubMedPubMedCentralGoogle Scholar
  138. 138.
    Adisa, A., Udeabor, S., Kubesch, A., Barbeck, M., & Ghanaati, S. (2016). The utility of azan trichrome staining in Ameloblastoma. Nigerian Postgraduate Medical Journal, 23(1), 44–46.PubMedGoogle Scholar
  139. 139.
    Spicer, S., & Lillie, R. D. (1961). Histochemical identification of basic proteins with Biebrich Scarlet at alkaline pH. Stain Technology, 36, 365–370.Google Scholar
  140. 140.
    Rajamohamedsait, H. B., & Sigurdsson, E. M. (2012). Histological staining of amyloid and pre-amyloid peptides and proteins in mouse tissue. Methods in Molecular Biology (Clifton, N.J.), 849, 411–424.Google Scholar
  141. 141.
    Liebmann, T., Renier, N., Bettayeb, K., Greengard, P., Tessier-Lavigne, M., & Flajolet, M. (2016). Three-dimensional study of Alzheimer’s disease hallmarks using the iDISCO clearing method. Cell Reports, 16(4), 1138–1152.PubMedPubMedCentralGoogle Scholar
  142. 142.
    Baumann, B., Woehrer, A., Ricken, G., Augustin, M., Mitter, C., Pircher, M., et al. (2017). Visualization of neuritic plaques in Alzheimer’s disease by polarization-sensitive optical coherence microscopy. Scientific Reports, 7, 43477.PubMedPubMedCentralGoogle Scholar
  143. 143.
    Wu, C., Scott, J., & Shea, J.-E. (2012). Binding of Congo red to amyloid protofibrils of the Alzheimer Aβ(9-40) peptide probed by molecular dynamics simulations. Biophysical Journal, 103(3), 550–557.PubMedPubMedCentralGoogle Scholar
  144. 144.
    Luna, J., Peralta-Ramirez, J., & Mena, R. (2008). P4-156: Thiazin red is a sensitive and accurate marker for the fast diagnosis of Alzheimer’s disease in nonfixed brain tissue in touch imprints preparations. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 4(4), T716.Google Scholar
  145. 145.
    Ly, P. T. T., Cai, F., & Song, W. (2011). Detection of neuritic plaques in Alzheimer’s disease mouse model. Journal of Visualized Experiments : JoVE, (53), 2831.Google Scholar
  146. 146.
    Chan, K. J. (2014). The wonderful colors of the hematoxylin-eosin stain in diagnostic surgical pathology. International Journal of Surgical Pathology, 22, 12–32.PubMedGoogle Scholar
  147. 147.
    Azevedo Tosta, T. A., Neves, L. A., & do Nascimento, M. Z. (2017). Segmentation methods of H&E-stained histological images of lymphoma: A review. Informatics in Medicine Unlocked, 9, 35–43.Google Scholar
  148. 148.
    Kuru, K. (2014). Optimization and enhancement of H&E stained microscopical images by applying bilinear interpolation method on lab color mode. Theoretical Biology & Medical Modelling, 11, 9.Google Scholar
  149. 149.
    Kherlopian, A. R., Song, T., Duan, Q., Neimark, M. A., Po, M. J., Gohagan, J. K., et al. (2008). A review of imaging techniques for systems biology. BMC Systems Biology, 2, 74.PubMedPubMedCentralGoogle Scholar
  150. 150.
    Garini, Y., Vermolen, B. J., & Young, I. T. (2005). From micro to nano: Recent advances in high-resolution microscopy. Current Opinion in Biotechnology, 16(1), 3–12.PubMedGoogle Scholar
  151. 151.
    Shoemaker, S. C., & Ando, N. (2018). X-rays in the cryo-electron microscopy era: Structural biology’s dynamic future. Biochemistry, 57(3), 277–285.PubMedPubMedCentralGoogle Scholar
  152. 152.
    Centonze Frohlich, V. (2008). Phase contrast and differential interference contrast (DIC) microscopy. Journal of Visualized Experiments : JoVE, (17), 844.Google Scholar
  153. 153.
    Liu, Y., Gonen, S., Gonen, T., & Yeates, T. O. (2018). Near-atomic cryo-EM imaging of a small protein displayed on a designed scaffolding system. Proceedings of the National Academy of Sciences of the United States of America, 115(13), 3362–3367.PubMedPubMedCentralGoogle Scholar
  154. 154.
    Monroe, E. B., Annangudi, S. P., Hatcher, N. G., Gutstein, H. B., Rubakhin, S. S., & Sweedler, J. V. (2008). SIMS and MALDI MS imaging of the spinal cord. Proteomics, 8(18), 3746–3754.PubMedPubMedCentralGoogle Scholar
  155. 155.
    Dilillo, M., Pellegrini, D., Ait-Belkacem, R., de Graaf, E. L., Caleo, M., & McDonnell, L. A. (2017). Mass spectrometry imaging, laser capture microdissection, and LC-MS/MS of the same tissue section. Journal of Proteome Research, 16(8), 2993–3001.PubMedGoogle Scholar
  156. 156.
    Taverna, D., Boraldi, F., De Santis, G., Caprioli, R. M., & Quaglino, D. (2015). Histology-directed and imaging mass spectrometry: An emerging technology in ectopic calcification. Bone, 74, 83–94.PubMedPubMedCentralGoogle Scholar
  157. 157.
    Enthaler, B., Trusch, M., Fischer, M., Rapp, C., Pruns, J. K., & Vietzke, J.-P. (2013). MALDI imaging in human skin tissue sections: Focus on various matrices and enzymes. Analytical and Bioanalytical Chemistry, 405(4), 1159–1170.PubMedGoogle Scholar
  158. 158.
    Walch, A., Rauser, S., Deininger, S.-O., & Höfler, H. (2008). MALDI imaging mass spectrometry for direct tissue analysis: A new frontier for molecular histology. Histochemistry and Cell Biology, 130(3), 421–434.PubMedPubMedCentralGoogle Scholar
  159. 159.
    Franck, J., Arafah, K., Elayed, M., Bonnel, D., Vergara, D., Jacquet, A., et al. (2009). MALDI imaging mass spectrometry: State of the art technology in clinical proteomics. Molecular & Cellular Proteomics, 8(9), 2023–2033.Google Scholar
  160. 160.
    Lazova, R., Seeley, E. H., Kutzner, H., Scolyer, R. A., Scott, G., Cerroni, L., et al. (2016). Imaging mass spectrometry assists in the classification of diagnostically challenging atypical Spitzoid neoplasms. Journal of the American Academy of Dermatology, 75(6), 1176–1186.e4.PubMedPubMedCentralGoogle Scholar
  161. 161.
    He, L., Long, L. R., Antani, S., & Thoma, G. R. (2012). Histology image analysis for carcinoma detection and grading. Computer Methods and Programs in Biomedicine, 107(3), 538–556.PubMedPubMedCentralGoogle Scholar
  162. 162.
    Acar, E., Plopper, G. E., & Yener, B. (2012). Coupled analysis of in vitro and histology tissue samples to quantify structure-function relationship. PLoS One, 7(3), e32227.PubMedPubMedCentralGoogle Scholar
  163. 163.
    Lavis, L. D. (2011). Histochemistry: Live and in color. Journal of Histochemistry and Cytochemistry, 59(2), 139–145.PubMedPubMedCentralGoogle Scholar
  164. 164.
    Rizzo, M. A., Davidson, M. W., & Piston, D. W. (2009). Fluorescent protein tracking and detection: Fluorescent protein structure and color variants. Cold Spring Harbor Protocols, 2009(12), pdb.top63.PubMedGoogle Scholar
  165. 165.
    Lev, R., & Gerard, A. (1967). The histochemical demonstration of protein in epithelial mucins. Journal of the Royal Microscopical Society, 87(3–4), 361–373.PubMedGoogle Scholar
  166. 166.
    Fujino, Y., Minamizaki, T., Yoshioka, H., Okada, M., & Yoshiko, Y. (2016). Imaging and mapping of mouse bone using MALDI-imaging mass spectrometry. Bone Reports, 5, 280–285.PubMedPubMedCentralGoogle Scholar
  167. 167.
    Žnidaršič, N., Mrak, P., Rajh, E., Soderžnik, K. Ž., Čeh, M., & Štrus, J. (2018). Cuticle matrix imaging by histochemistry, fluorescence, and electron microscopy. Resolution and Discovery, 3(1), 5–12.Google Scholar
  168. 168.
    Halabi, C. M., & Mecham, R. P. (2018). Chapter 12 - Elastin purification and solubilization. In R. P. Mecham (Ed.), Methods in cell biology (pp. 207–222). Boston: Academic Press.Google Scholar
  169. 169.
    Percival, K. R., & Radi, Z. A. (2016). A modified Verhoeff-Van Gieson elastin histochemical stain to enable pulmonary arterial hypertension model characterization. European Journal of Histochemistry : EJH, 60(1), 2588.PubMedGoogle Scholar
  170. 170.
    Bloemberg, D., & Quadrilatero, J. (2012). Rapid determination of myosin heavy chain expression in rat, mouse, and human skeletal muscle using multicolor immunofluorescence analysis. PLoS One, 7(4), e35273.PubMedPubMedCentralGoogle Scholar
  171. 171.
    Gkantidis, N., Blumer, S., Katsaros, C., Graf, D., & Chiquet, M. (2012). Site-specific expression of Gelatinolytic activity during morphogenesis of the secondary palate in the mouse embryo. PLoS One, 7(10), e47762.PubMedPubMedCentralGoogle Scholar
  172. 172.
    de Souza Guerra, C., Carla Lara Pereira, Y., Issa, J., Galisteu Luiz, K., Del Bel Guimaraes, E. A., Gerlach, R. F., et al. (2014). Histological, histochemical, and protein changes after induced malocclusion by occlusion alteration of Wistar rats. BioMed Research International, 2014, 10.Google Scholar
  173. 173.
    Babii, C., Bahrin, L. G., Neagu, A.-N., Gostin, I., Mihasan, M., Birsa, L. M., et al. (2016). Antibacterial activity and proposed action mechanism of a new class of synthetic tricyclic flavonoids. Journal of Applied Microbiology, 120(3), 630–637.PubMedGoogle Scholar
  174. 174.
    Babii, C., Mihalache, G., Bahrin, L. G., Neagu, A.-N., Gostin, I., Mihai, C. T., et al. (2018). A novel synthetic flavonoid with potent antibacterial properties: In vitro activity and proposed mode of action. PLoS One, 13(4), e0194898.PubMedPubMedCentralGoogle Scholar
  175. 175.
    Boyd, V., Cholewa, O. M., & Papas, K. K. (2008). Limitations in the use of fluorescein diacetate/Propidium iodide (FDA/PI) and cell permeable nucleic acid stains for viability measurements of isolated islets of Langerhans. Current Trends in Biotechnology and Pharmacy, 2(2), 66–84.PubMedPubMedCentralGoogle Scholar
  176. 176.
    Oyejide, L., Mendes, O. R., & Mikaelian, I. (2013). Chapter 10 - Molecular pathology: Applications in nonclinical drug development. In A. S. Faqi (Ed.), A comprehensive guide to toxicology in preclinical drug development (pp. 237–276). Boston: Academic Press.Google Scholar
  177. 177.
    Chen, X., Velliste, M., & Murphy, R. F. (2006). Automated interpretation of subcellular patterns in fluorescence microscope images for location proteomics. Cytometry. Part A : The Journal Of The International Society For Analytical Cytology, 69(7), 631–640.Google Scholar
  178. 178.
    Kamiyama, D., Sekine, S., Barsi-Rhyne, B., Hu, J., Chen, B., Gilbert, L. A., et al. (2016). Versatile protein tagging in cells with split fluorescent protein. Nature Communications, 7, 11046.PubMedPubMedCentralGoogle Scholar
  179. 179.
    Ghisaidoobe, A. B. T., & Chung, S. J. (2014). Intrinsic tryptophan fluorescence in the detection and analysis of proteins: A focus on Förster resonance energy transfer techniques. International Journal of Molecular Sciences, 15(12), 22518–22538.PubMedPubMedCentralGoogle Scholar
  180. 180.
    Niyangoda, C., Miti, T., Breydo, L., Uversky, V., & Muschol, M. (2017). Carbonyl-based blue autofluorescence of proteins and amino acids. PLoS One, 12(5), e0176983.PubMedPubMedCentralGoogle Scholar
  181. 181.
    Deeb, S., Nesr, K. H., Mahdy, E., Badawey, M., & Badei, M. (2008). Autofluorescence of routinely hematoxylin and eosin-stained sections without exogenous markers. African Journal of Biotechnology, 7.Google Scholar
  182. 182.
    Croce, A. C., & Bottiroli, G. (2014). Autofluorescence spectroscopy and imaging: A tool for biomedical research and diagnosis. European Journal of Histochemistry : EJH, 58(4), 2461.PubMedGoogle Scholar
  183. 183.
    Duraiyan, J., Govindarajan, R., Kaliyappan, K., & Palanisamy, M. (2012). Applications of immunohistochemistry. Journal of Pharmacy & Bioallied Sciences, 4(Suppl 2), S307–S309.Google Scholar
  184. 184.
    Robertson, D., Savage, K., Reis-Filho, J. S., & Isacke, C. M. (2008). Multiple immunofluorescence labelling of formalin-fixed paraffin-embedded (FFPE) tissue. BMC Cell Biology, 9, 13.PubMedPubMedCentralGoogle Scholar
  185. 185.
    Duncan, S. M., & Seigel, G. M. (2016). High-contrast enzymatic immunohistochemistry of pigmented tissues. Journal of Biological Methods, 3(3), e47.PubMedPubMedCentralGoogle Scholar
  186. 186.
    Lai, H. M., Ng, W.-L., Gentleman, S. M., & Wu, W. (2017). Chemical probes for visualizing intact animal and human brain tissue. Cell Chemical Biology, 24(6), 659–672.PubMedGoogle Scholar
  187. 187.
    Paulson, J. B., Ramsden, M., Forster, C., Sherman, M. A., McGowan, E., & Ashe, K. H. (2008). Amyloid plaque and neurofibrillary tangle pathology in a regulatable mouse model of Alzheimer’s disease. The American Journal of Pathology, 173(3), 762–772.PubMedPubMedCentralGoogle Scholar
  188. 188.
    Jarero-Basulto, J. J., Luna-Muñoz, J., Mena, R., Kristofikova, Z., Ripova, D., Perry, G., et al. (2013). Proteolytic cleavage of polymeric tau protein by caspase-3: Implications for Alzheimer disease. Journal of Neuropathology & Experimental Neurology, 72(12), 1145–1161.Google Scholar
  189. 189.
    Morawski, M., Kirilina, E., Scherf, N., Jäger, C., Reimann, K., Trampel, R., et al. (2017). Developing 3D microscopy with CLARITY on human brain tissue: Towards a tool for informing and validating MRI-based histology. NeuroImage, 182, 417–428.PubMedGoogle Scholar
  190. 190.
    Hynes, R. O., & Zhao, Q. (2000). The evolution of cell adhesion. The Journal of Cell Biology, 150(2), F89–F96.PubMedGoogle Scholar
  191. 191.
    Heintz, T. G., Eva, R., & Fawcett, J. W. (2016). Regional regulation of Purkinje cell dendritic spines by Integrins and Eph/Ephrins. PLoS One, 11(8), e0158558.PubMedPubMedCentralGoogle Scholar
  192. 192.
    Shahrabi-Farahani, S., Wang, L., Zwaans, B. M. M., Santana, J. M., Shimizu, A., Takashima, S., et al. (2014). Neuropilin 1 expression correlates with differentiation status of epidermal cells and cutaneous squamous cell carcinomas. Laboratory Investigation, 94(7), 752–765.PubMedGoogle Scholar
  193. 193.
    Taverna, D., Nanney, L. B., Pollins, A. C., Sindona, G., & Caprioli, R. (2011). Spatial mapping by imaging mass spectrometry offers advancements for rapid definition of human skin proteomic signatures. Experimental Dermatology, 20(8), 642–647.PubMedPubMedCentralGoogle Scholar
  194. 194.
    Angel, P. M., Comte-Walters, S., Ball, L. E., Talbot, K., Mehta, A., Brockbank, K. G. M., et al. (2018). Mapping extracellular matrix proteins in formalin-fixed, paraffin-embedded tissues by MALDI imaging mass spectrometry. Journal of Proteome Research, 17(1), 635–646.PubMedGoogle Scholar
  195. 195.
    Yamamoto, T., Hasegawa, T., Yamamoto, T., Hongo, H., & Amizuka, N. (2016). Histology of human cementum: Its structure, function, and development. Japanese Dental Science Review, 52(3), 63–74.PubMedGoogle Scholar
  196. 196.
    Senbanjo, L. T., & Chellaiah, M. A. (2017). CD44: A multifunctional cell surface adhesion receptor is a regulator of progression and metastasis of cancer cells. Frontiers in Cell and Developmental Biology, 5, 18.PubMedPubMedCentralGoogle Scholar
  197. 197.
    Forest, F., Thuret, G., Gain, P., Dumollard, J.-M., Peoc’h, M., Perrache, C., et al. (2015). Optimization of immunostaining on flat-mounted human corneas. Molecular Vision, 21, 1345–1356.PubMedPubMedCentralGoogle Scholar
  198. 198.
    He, Z., Campolmi, N., Ha Thi, B.-M., Dumollard, J.-M., Peoc’h, M., Garraud, O., et al. (2011). Optimization of immunolocalization of cell cycle proteins in human corneal endothelial cells. Molecular Vision, 17, 3494–3511.PubMedPubMedCentralGoogle Scholar
  199. 199.
    He, Z., Forest, F., Gain, P., Rageade, D., Bernard, A., Acquart, S., et al. (2016). 3D map of the human corneal endothelial cell. Scientific Reports, 6, 29047.PubMedPubMedCentralGoogle Scholar
  200. 200.
    Ren, S., Liu, T., Jia, C., Qi, X., & Wang, Y. (2010). Physiological expression of lens α-, β-, and γ-crystallins in murine and human corneas. Molecular vision (Vol. 16, pp. 2745–2752).Google Scholar
  201. 201.
    Chucair-Elliott, A. J., Zheng, M., & Carr, D. J. J. (2015). Degeneration and regeneration of corneal nerves in response to HSV-1 infection. Investigative Ophthalmology & Visual Science, 56(2), 1097–1107.Google Scholar
  202. 202.
    Wilsbacher, L. D., & Coughlin, S. R. (2015). Analysis of cardiomyocyte development using immunofluorescence in embryonic mouse heart. Journal of Visualized Experiments : JoVE, (97), 52644.Google Scholar
  203. 203.
    Sitaram, P., Hainline, S. G., & Lee, L. A. (2014). Cytological analysis of spermatogenesis: Live and fixed preparations of Drosophila testes. Journal of Visualized Experiments : JoVE, (83), e51058.Google Scholar
  204. 204.
    Montgomery, S. C., & Cox, B. C. (2016). Whole mount dissection and immunofluorescence of the adult mouse cochlea. Journal of Visualized Experiments : JoVE, (107), 53561.Google Scholar
  205. 205.
    Pellicciari, C. (2016). Is there still room for novelty, in histochemical papers? European Journal of Histochemistry : EJH, 60(4), 2758.PubMedGoogle Scholar
  206. 206.
    Siegerist, F., Endlich, K., & Endlich, N. (2018). Novel microscopic techniques for podocyte research. Frontiers in Endocrinology, 9, 379.PubMedPubMedCentralGoogle Scholar
  207. 207.
    Fritzky, L., & Lagunoff, D. (2013). Advanced methods in fluorescence microscopy. Analytical Cellular Pathology (Amsterdam), 36(1–2), 5–17.Google Scholar
  208. 208.
    Wallrabe, H., & Periasamy, A. (2005). Imaging protein molecules using FRET and FLIM microscopy. Current Opinion in Biotechnology, 16(1), 19–27.PubMedGoogle Scholar
  209. 209.
    Kollmannsperger, A., Sharei, A., Raulf, A., Heilemann, M., Langer, R., Jensen, K. F., et al. (2016). Live-cell protein labelling with nanometre precision by cell squeezing. Nature Communications, 7, 10372.PubMedPubMedCentralGoogle Scholar
  210. 210.
    Stehbens, S., Pemble, H., Murrow, L., & Wittmann, T. (2012). Imaging intracellular protein dynamics by spinning disk confocal microscopy. Methods in Enzymology, 504, 293–313.PubMedPubMedCentralGoogle Scholar
  211. 211.
    Chozinski, T. J., Gagnon, L. A., & Vaughan, J. C. (2014). Twinkle, twinkle little star: Photoswitchable fluorophores for super-resolution imaging. FEBS Letters, 588(19), 3603–3612.PubMedGoogle Scholar
  212. 212.
    Sydor, A. M., Czymmek, K. J., Puchner, E. M., & Mennella, V. (2015). Super-resolution microscopy: From single molecules to supramolecular assemblies. Trends in Cell Biology, 25(12), 730–748.PubMedGoogle Scholar
  213. 213.
    Cox, S. (2015). Super-resolution imaging in live cells. Developmental Biology, 401(1), 175–181.PubMedPubMedCentralGoogle Scholar
  214. 214.
    Galbraith, C. G., & Galbraith, J. A. (2011). Super-resolution microscopy at a glance. Journal of Cell Science, 124(Pt 10), 1607–1611.PubMedPubMedCentralGoogle Scholar
  215. 215.
    Hell, S. W., & Wichmann, J. (1994). Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Optics Letters, 19(11), 780–782.PubMedGoogle Scholar
  216. 216.
    Bianchini, P., Peres, C., Oneto, M., Galiani, S., Vicidomini, G., & Diaspro, A. (2015). STED nanoscopy: A glimpse into the future. Cell and Tissue Research, 360(1), 143–150.PubMedPubMedCentralGoogle Scholar
  217. 217.
    Kempf, C., Staudt, T., Bingen, P., Horstmann, H., Engelhardt, J., Hell, S. W., et al. (2013). Tissue multicolor STED nanoscopy of presynaptic proteins in the calyx of held. PLoS One, 8(4), e62893.PubMedPubMedCentralGoogle Scholar
  218. 218.
    Huang, B., Jones, S. A., Brandenburg, B., & Zhuang, X. (2008). Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nature Methods, 5(12), 1047–1052.PubMedPubMedCentralGoogle Scholar
  219. 219.
    Bates, M., Jones, S. A., & Zhuang, X. (2013). Stochastic optical reconstruction microscopy (STORM): A method for superresolution fluorescence imaging. Cold Spring Harbor Protocols, 2013(6), pdb.top075143.PubMedGoogle Scholar
  220. 220.
    Zhang, J., Carver, C. M., Choveau, F. S., & Shapiro, M. S. (2016). Clustering and functional coupling of diverse ion channels and signaling proteins revealed by super-resolution STORM microscopy in neurons. Neuron, 92(2), 461–478.PubMedPubMedCentralGoogle Scholar
  221. 221.
    Ke, M.-T., Nakai, Y., Fujimoto, S., Takayama, R., Yoshida, S., Kitajima, T. S., et al. (2016). Super-resolution mapping of neuronal circuitry with an index-optimized clearing agent. Cell Reports, 14(11), 2718–2732.PubMedGoogle Scholar
  222. 222.
    Loussert Fonta, C., Leis, A., Mathisen, C., Bouvier, D. S., Blanchard, W., Volterra, A., et al. (2015). Analysis of acute brain slices by electron microscopy: A correlative light–electron microscopy workflow based on Tokuyasu cryo-sectioning. Journal of Structural Biology, 189(1), 53–61.PubMedGoogle Scholar
  223. 223.
    Nickerson, A., Huang, T., Lin, L.-J., & Nan, X. (2014). Photoactivated localization microscopy with bimolecular fluorescence complementation (BiFC-PALM) for nanoscale imaging of protein-protein interactions in cells. PLoS One, 9(6), e100589.PubMedPubMedCentralGoogle Scholar
  224. 224.
    Moore, T. I., Aaron, J., Chew, T.-L., & Springer, T. A. (2018). Measuring integrin conformational change on the cell surface with super-resolution microscopy. Cell Reports, 22(7), 1903–1912.PubMedPubMedCentralGoogle Scholar
  225. 225.
    Schnorrenberg, S., Grotjohann, T., Vorbrüggen, G., Herzig, A., Hell, S. W., & Jakobs, S. (2016). In vivo super-resolution RESOLFT microscopy of Drosophila melanogaster. eLife, 5, e15567.PubMedPubMedCentralGoogle Scholar
  226. 226.
    Lavoie-Cardinal, F., Jensen, N. A., Westphal, V., Stiel, A. C., Chmyrov, A., Bierwagen, J., et al. (2014). Two-color RESOLFT Nanoscopy with Green and red fluorescent photochromic proteins. Chemphyschem, 15(4), 655–663.PubMedGoogle Scholar
  227. 227.
    Godin, A. G., Lounis, B., & Cognet, L. (2014). Super-resolution microscopy approaches for live cell imaging. Biophysical Journal, 107(8), 1777–1784.PubMedPubMedCentralGoogle Scholar
  228. 228.
    Nahidiazar, L., Agronskaia, A. V., Broertjes, J., van den Broek, B., & Jalink, K. (2016). Optimizing imaging conditions for demanding multi-color super resolution localization microscopy. PLoS One, 11(7), e0158884.PubMedPubMedCentralGoogle Scholar
  229. 229.
    Choquet, D. (2014). The 2014 Nobel prize in chemistry: A large-scale prize for achievements on the nanoscale. Neuron, 84(6), 1116–1119.PubMedGoogle Scholar
  230. 230.
    Stahley, S. N., Warren, M. F., Feldman, R. J., Swerlick, R. A., Mattheyses, A. L., & Kowalczyk, A. P. (2016). Super-resolution microscopy reveals altered desmosomal protein organization in tissue from patients with Pemphigus Vulgaris. The Journal of Investigative Dermatology, 136(1), 59–66.PubMedPubMedCentralGoogle Scholar
  231. 231.
    Stahley, S. N., Bartle, E. I., Atkinson, C. E., Kowalczyk, A. P., & Mattheyses, A. L. (2016). Molecular organization of the desmosome as revealed by direct stochastic optical reconstruction microscopy. Journal of Cell Science, 129(15), 2897–2904.PubMedPubMedCentralGoogle Scholar
  232. 232.
    Shelden, E. A., Colburn, Z. T., & Jones, J. C. R. (2016). Focusing super resolution on the cytoskeleton. F1000Research, 5, F1000 Faculty Rev-998.PubMedPubMedCentralGoogle Scholar
  233. 233.
    Nahidiazar, L., Kreft, M., van den Broek, B., Secades, P., Manders, E. M. M., Sonnenberg, A., et al. (2015). The molecular architecture of hemidesmosomes, as revealed with super-resolution microscopy. Journal of Cell Science, 128(20), 3714–3719.PubMedGoogle Scholar
  234. 234.
    Grebe, S. K. G., & Singh, R. J. (2011). LC-MS/MS in the clinical laboratory – Where to from Here? The Clinical Biochemist Reviews, 32(1), 5–31.PubMedPubMedCentralGoogle Scholar
  235. 235.
    Addie, R. D., Balluff, B., Bovée, J. V. M. G., Morreau, H., & McDonnell, L. A. (2015). Current state and future challenges of mass spectrometry imaging for clinical research. Analytical Chemistry, 87(13), 6426–6433.PubMedGoogle Scholar
  236. 236.
    Caprioli, R. M., Farmer, T. B., & Gile, J. (1997). Molecular imaging of biological samples: Localization of peptides and proteins using MALDI-TOF MS. Analytical Chemistry, 69(23), 4751–4760.PubMedGoogle Scholar
  237. 237.
    Schwamborn, K., & Caprioli, R. M. (2010). MALDI imaging mass spectrometry – Painting molecular pictures. Molecular Oncology, 4(6), 529–538.PubMedPubMedCentralGoogle Scholar
  238. 238.
    Maier, S. K., Hahne, H., Gholami, A. M., Balluff, B., Meding, S., Schoene, C., et al. (2013). Comprehensive identification of proteins from MALDI imaging. Molecular & Cellular Proteomics, 12(10), 2901–2910.Google Scholar
  239. 239.
    Mourino-Alvarez, L., Iloro, I., de la Cuesta, F., Azkargorta, M., Sastre-Oliva, T., Escobes, I., et al. (2016). MALDI-imaging mass spectrometry: A step forward in the anatomopathological characterization of stenotic aortic valve tissue. Scientific Reports, 6, 27106.PubMedPubMedCentralGoogle Scholar
  240. 240.
    Yajima, Y., Hiratsuka, T., Kakimoto, Y., Ogawa, S., Shima, K., Yamazaki, Y., et al. (2018). Region of interest analysis using mass spectrometry imaging of mitochondrial and sarcomeric proteins in acute cardiac infarction tissue. Scientific Reports, 8(1), 7493.PubMedPubMedCentralGoogle Scholar
  241. 241.
    Heijs, B., Tolner, E. A., Bovée, J. V. M. G., van den Maagdenberg, A. M. J. M., & McDonnell, L. A. (2015). Brain region-specific dynamics of on-tissue protein digestion using MALDI mass spectrometry imaging. Journal of Proteome Research, 14(12), 5348–5354.PubMedGoogle Scholar
  242. 242.
    Wisztorski, M., Croix, D., Macagno, E., Fournier, I., & Salzet, M. (2008). Molecular MALDI imaging: An emerging technology for neuroscience studies. Developmental Neurobiology, 68(6), 845–858.PubMedGoogle Scholar
  243. 243.
    Toss, A., De Matteis, E., Rossi, E., Casa, L. D., Iannone, A., Federico, M., et al. (2013). Ovarian cancer: Can proteomics give new insights for therapy and diagnosis? International Journal of Molecular Sciences, 14(4), 8271–8290.PubMedPubMedCentralGoogle Scholar
  244. 244.
    Chughtai, K., & Heeren, R. M. A. (2010). Mass spectrometric imaging for biomedical tissue analysis. Chemical Reviews, 110(5), 3237–3277.PubMedPubMedCentralGoogle Scholar
  245. 245.
    Arentz, G., Mittal, P., Zhang, C., Ho, Y. Y., Briggs, M., Winderbaum, L., et al. (2017). Chapter Two - Applications of mass spectrometry imaging to cancer. In R. R. Drake & L. A. McDonnell (Eds.), Advances in cancer research (pp. 27–66). Boston: Academic Press.Google Scholar
  246. 246.
    Seeley, E. H., & Caprioli, R. M. (2012). 3D imaging by mass spectrometry: A new frontier. Analytical Chemistry, 84(5), 2105–2110.PubMedPubMedCentralGoogle Scholar
  247. 247.
    Spraggins, J. M., Rizzo, D. G., Moore, J. L., Noto, M. J., Skaar, E. P., & Caprioli, R. M. (2016). Next-generation technologies for spatial proteomics: Integrating ultra-high speed MALDI-TOF and high mass resolution MALDI FTICR imaging mass spectrometry for protein analysis. Proteomics, 16(11–12), 1678–1689.PubMedPubMedCentralGoogle Scholar
  248. 248.
    Angel, P. M., Baldwin, H. S., Gottlieb, D., Su, Y. R., Mayer, J. E., Bichell, D., et al. (2017). Advances in MALDI imaging mass spectrometry of proteins in cardiac tissue, including the heart valve. Biochimica et Biophysica Acta, 1865(7), 927–935.PubMedPubMedCentralGoogle Scholar
  249. 249.
    Grassl, J., Taylor, N. L., & Millar, A. (2011). Matrix-assisted laser desorption/ionisation mass spectrometry imaging and its development for plant protein imaging. Plant Methods, 7(1), 21.PubMedPubMedCentralGoogle Scholar
  250. 250.
    Francese, S., Bradshaw, R., Flinders, B., Mitchell, C., Bleay, S., Cicero, L., et al. (2013). Curcumin: A multipurpose matrix for MALDI mass spectrometry imaging applications. Analytical Chemistry, 85(10), 5240–5248.PubMedGoogle Scholar
  251. 251.
    Baker, T. C., Han, J., & Borchers, C. H. (2017). Recent advancements in matrix-assisted laser desorption/ionization mass spectrometry imaging. Current Opinion in Biotechnology, 43, 62–69.PubMedGoogle Scholar
  252. 252.
    Schubert, K. O., Weiland, F., Baune, B. T., & Hoffmann, P. (2016). The use of MALDI-MSI in the investigation of psychiatric and neurodegenerative disorders: A review. Proteomics, 16(11–12), 1747–1758.PubMedGoogle Scholar
  253. 253.
    Franck, J., Longuespée, R., Wisztorski, M., Van Remoortere, A., Van Zeijl, R., Deelder, A., et al. (2010). MALDI mass spectrometry imaging of proteins exceeding 30,000 daltons. Medical Science Monitor, 16, BR293–BR299.PubMedGoogle Scholar
  254. 254.
    van Remoortere, A., van Zeijl, R. J. M., van den Oever, N., Franck, J., Longuespée, R., Wisztorski, M., et al. (2010). MALDI imaging and profiling MS of higher mass proteins from tissue. Journal of the American Society for Mass Spectrometry, 21(11), 1922–1929.PubMedGoogle Scholar
  255. 255.
    Anderson, D. M. G., Floyd, K. A., Barnes, S., Clark, J. M., Clark, J. I., McHaourab, H., et al. (2015). A method to prevent protein delocalization in imaging mass spectrometry of non-adherent tissues: Application to small vertebrate lens imaging. Analytical and Bioanalytical Chemistry, 407(8), 2311–2320.PubMedPubMedCentralGoogle Scholar
  256. 256.
    Fico, D., Margapoti, E., Pennetta, A., & De Benedetto, G. E. (2018). An enhanced GC/MS procedure for the identification of proteins in paint microsamples. Journal of Analytical Methods in Chemistry, 2018, 8.Google Scholar
  257. 257.
    Pitt, J. J. (2009). Principles and applications of liquid chromatography-mass spectrometry in clinical biochemistry. The Clinical Biochemist Reviews, 30(1), 19–34.PubMedPubMedCentralGoogle Scholar
  258. 258.
    Pirman, D. A., Reich, R. F., Kiss, A., Heeren, R. M. A., & Yost, R. A. (2013). Quantitative MALDI tandem mass spectrometric imaging of cocaine from brain tissue with a deuterated internal standard. Analytical Chemistry, 85(2), 1081–1089.PubMedGoogle Scholar
  259. 259.
    Wilson, I. D. (2011). High-performance liquid chromatography-mass spectrometry (HPLC-MS)-based drug metabolite profiling. In T. O. Metz (Ed.), Metabolic profiling: Methods and protocols (pp. 173–190). Totowa: Humana Press.Google Scholar
  260. 260.
    Li, M., Hou, X.-F., Zhang, J., Wang, S.-C., Fu, Q., & He, L.-C. (2011). Applications of HPLC/MS in the analysis of traditional Chinese medicines. Journal of Pharmaceutical Analysis, 1(2), 81–91.PubMedGoogle Scholar
  261. 261.
    Busardò, F. P., Kyriakou, C., Marchei, E., Pacifici, R., Pedersen, D. S., & Pichini, S. (2017). Ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC–MS/MS) for determination of GHB, precursors and metabolites in different specimens: Application to clinical and forensic cases. Journal of Pharmaceutical and Biomedical Analysis, 137, 123–131.PubMedGoogle Scholar
  262. 262.
    Lachat, L., & Glauser, G. (2018). Development and validation of an ultra-sensitive UHPLC–MS/MS method for neonicotinoid analysis in Milk. Journal of Agricultural and Food Chemistry, 66(32), 8639–8646.PubMedGoogle Scholar
  263. 263.
    Liu, C. (2011). The application of SELDI-TOF-MS in clinical diagnosis of cancers. Journal of Biomedicine and Biotechnology, 2011, 6.Google Scholar
  264. 264.
    Vorderwülbecke, S., Cleverley, S., Weinberger, S. R., & Wiesner, A. (2005). Protein quantification by the SELDI-TOF-MS–based ProteinChip® system. Nature Methods, 2, 393.Google Scholar
  265. 265.
    Ryan, D. J., Nei, D., Prentice, B. M., Rose, K. L., Caprioli, R. M., & Spraggins, J. M. (2018). Protein identification in imaging mass spectrometry through spatially targeted liquid micro-extractions. Rapid Communications in Mass Spectrometry, 32(5), 442–450.PubMedGoogle Scholar
  266. 266.
    Barry, J. A., Groseclose, M. R., Robichaud, G., Castellino, S., & Muddiman, D. C. (2015). Assessing drug and metabolite detection in liver tissue by UV-MALDI and IR-MALDESI mass spectrometry imaging coupled to FT-ICR MS. International Journal of Mass Spectrometry, 377, 448–455.PubMedGoogle Scholar
  267. 267.
    Guinan, T., Kirkbride, P., Pigou, P. E., Ronci, M., Kobus, H., & Voelcker, N. H. (2015). Surface-assisted laser desorption ionization mass spectrometry techniques for application in forensics. Mass Spectrometry Reviews, 34(6), 627–640.PubMedGoogle Scholar
  268. 268.
    Lewis, W. G., Shen, Z., Finn, M. G., & Siuzdak, G. (2003). Desorption/ionization on silicon (DIOS) mass spectrometry: Background and applications. International Journal of Mass Spectrometry, 226(1), 107–116.Google Scholar
  269. 269.
    Moening, T. N., Brown, V. L., & He, L. (2015). Nanostructure-initiator mass spectrometry (NIMS) for molecular mapping of animal tissues. In L. He (Ed.), Mass spectrometry imaging of small molecules (pp. 151–157). New York: Springer.Google Scholar
  270. 270.
    Yanes, O., Woo, H.-K., Northen, T. R., Oppenheimer, S. R., Shriver, L., Apon, J., et al. (2009). Nanostructure initiator mass spectrometry: Tissue imaging and direct biofluid analysis. Analytical Chemistry, 81(8), 2969–2975.PubMedPubMedCentralGoogle Scholar
  271. 271.
    Cobice, D. F., Goodwin, R. J. A., Andren, P. E., Nilsson, A., Mackay, C. L., & Andrew, R. (2015). Future technology insight: Mass spectrometry imaging as a tool in drug research and development. British Journal of Pharmacology, 172(13), 3266–3283.PubMedPubMedCentralGoogle Scholar
  272. 272.
    Garza, K. Y., Feider, C. L., Klein, D. R., Rosenberg, J. A., Brodbelt, J. S., & Eberlin, L. S. (2018). Desorption electrospray ionization mass spectrometry imaging of proteins directly from biological tissue sections. Analytical Chemistry, 90(13), 7785–7789.PubMedPubMedCentralGoogle Scholar
  273. 273.
    Schulz, S., Becker, M., Groseclose, M. R., Schadt, S., & Hopf, C. (2019). Advanced MALDI mass spectrometry imaging in pharmaceutical research and drug development. Current Opinion in Biotechnology, 55, 51–59.PubMedGoogle Scholar
  274. 274.
    Dilillo, M., Ait-Belkacem, R., Esteve, C., Pellegrini, D., Nicolardi, S., Costa, M., et al. (2017). Ultra-high mass resolution MALDI imaging mass spectrometry of proteins and metabolites in a mouse model of glioblastoma. Scientific Reports, 7(1), 603.PubMedPubMedCentralGoogle Scholar
  275. 275.
    Stauber, J., El Ayed, M., Wisztorski, M., Salzet, M., & Fournier, I. (2010). Specific MALDI-MSI: TAG-MASS. Methods in Molecular Biology, 656, 339–361.PubMedGoogle Scholar
  276. 276.
    Debois, D., Bertrand, V., Quinton, L., De Pauw-Gillet, M.-C., & De Pauw, E. (2010). MALDI-in source decay applied to mass spectrometry imaging: A new tool for protein identification. Analytical Chemistry, 82(10), 4036–4045.PubMedGoogle Scholar
  277. 277.
    Cooper, H. J. (2016). To what extent is FAIMS beneficial in the analysis of proteins? Journal of the American Society for Mass Spectrometry, 27, 566–577.PubMedPubMedCentralGoogle Scholar
  278. 278.
    Griffiths, R. L., Creese, A. J., Race, A. M., Bunch, J., & Cooper, H. J. (2016). LESA FAIMS mass spectrometry for the spatial profiling of proteins from tissue. Analytical Chemistry, 88(13), 6758–6766.PubMedGoogle Scholar
  279. 279.
    Bouslimani, A., Porto, C., Rath, C. M., Wang, M., Guo, Y., Gonzalez, A., et al. (2015). Molecular cartography of the human skin surface in 3D. Proceedings of the National Academy of Sciences, 112(17), E2120.Google Scholar
  280. 280.
    Soufi, Y., & Soufi, B. (2016). Mass spectrometry-based bacterial proteomics: Focus on dermatologic microbial pathogens. Frontiers in Microbiology, 7, 181.PubMedPubMedCentralGoogle Scholar
  281. 281.
    Dunham, S. J. B., Ellis, J. F., Li, B., & Sweedler, J. V. (2017). Mass spectrometry imaging of complex microbial communities. Accounts of Chemical Research, 50(1), 96–104.PubMedGoogle Scholar
  282. 282.
    Propheter, D. C., & Hooper, L. V. (2015). Bacteria come into focus: New tools for visualizing the microbiota. Cell Host & Microbe, 18(4), 392–394.Google Scholar
  283. 283.
    de Macedo, C. S., Anderson, D. M., & Schey, K. L. (2017). MALDI (matrix assisted laser desorption ionization) imaging mass spectrometry (IMS) of skin: Aspects of sample preparation. Talanta, 174, 325–335.PubMedGoogle Scholar
  284. 284.
    Brunetti, A. E., Marani, M. M., Soldi, R. A., Mendonça, J. N., Faivovich, J., Cabrera, G. M., et al. (2018). Cleavage of peptides from amphibian skin revealed by combining analysis of gland secretion and in situ MALDI imaging mass spectrometry. ACS omega, 3(5), 5426–5434.PubMedPubMedCentralGoogle Scholar
  285. 285.
    Margaux, F., Pascale, R., Marcela, S., Emmanuelle, L.-W., & Armelle, C.-D. (2017). Omics for precious rare biosamples: Characterization of ancient human hair by a proteomic approach. OMICS: A Journal of Integrative Biology, 21(7), 361–370.Google Scholar
  286. 286.
    Kempson, I. M., & Lombi, E. (2011). Hair analysis as a biomonitor for toxicology, disease and health status. Chemical Society Reviews, 40(7), 3915–3940.PubMedGoogle Scholar
  287. 287.
    Wilson, A. S., & Tobin, D. J. (2010). Hair after death. In R. M. Trüeb & D. J. Tobin (Eds.), Aging hair (pp. 249–261). Heidelberg: Springer.Google Scholar
  288. 288.
    Poetzsch, M., Steuer, A. E., Roemmelt, A. T., Baumgartner, M. R., & Kraemer, T. (2014). Single hair analysis of small molecules using MALDI-triple quadrupole MS imaging and LC-MS/MS: Investigations on opportunities and pitfalls. Analytical Chemistry, 86(23), 11758–11765.PubMedGoogle Scholar
  289. 289.
    Flinders, B., Cuypers, E., Zeijlemaker, H., Tytgat, J., & Heeren, R. M. A. (2015). Preparation of longitudinal sections of hair samples for the analysis of cocaine by MALDI-MS/MS and TOF-SIMS imaging. Drug Testing and Analysis, 7(10), 859–865.PubMedGoogle Scholar
  290. 290.
    Flinders, B., Beasley, E., Verlaan, R. M., Cuypers, E., Francese, S., Bassindale, T., et al. (2017). Optimization of sample preparation and instrumental parameters for the rapid analysis of drugs of abuse in hair samples by MALDI-MS/MS imaging. Journal of the American Society for Mass Spectrometry, 28(11), 2462–2468.PubMedPubMedCentralGoogle Scholar
  291. 291.
    Martin-Lorenzo, M., Alvarez-Llamas, G., McDonnell, L. A., & Vivanco, F. (2016). Molecular histology of arteries: Mass spectrometry imaging as a novel ex vivo tool to investigate atherosclerosis. Expert Review of Proteomics, 13(1), 69–81.PubMedGoogle Scholar
  292. 292.
    Martin-Lorenzo, M., Balluff, B., Maroto, A. S., Carreira, R. J., van Zeijl, R. J. M., Gonzalez-Calero, L., et al. (2015). Lipid and protein maps defining arterial layers in atherosclerotic aorta. Data in Brief, 4, 328–331.PubMedPubMedCentralGoogle Scholar
  293. 293.
    Martin-Lorenzo, M., Balluff, B., Maroto, A. S., Carreira, R. J., van Zeijl, R. J. M., Gonzalez-Calero, L., et al. (2015). Molecular anatomy of ascending aorta in atherosclerosis by MS imaging: Specific lipid and protein patterns reflect pathology. Journal of Proteomics, 126, 245–251.PubMedGoogle Scholar
  294. 294.
    Martin-Lorenzo, M., Balluff, B., Sanz-Maroto, A., van Zeijl, R. J. M., Vivanco, F., Alvarez-Llamas, G., et al. (2014). 30μm spatial resolution protein MALDI MSI: In-depth comparison of five sample preparation protocols applied to human healthy and atherosclerotic arteries. Journal of Proteomics, 108, 465–468.PubMedGoogle Scholar
  295. 295.
    Kong, S., Zhang, Y. H., & Zhang, W. (2018). Regulation of intestinal epithelial cells properties and functions by amino acids. BioMed Research International, 2018, 10.Google Scholar
  296. 296.
    Nilsson, A., Peric, A., Strimfors, M., Goodwin, R. J. A., Hayes, M. A., Andrén, P. E., et al. (2017). Mass spectrometry imaging proves differential absorption profiles of well-characterised permeability markers along the crypt-villus axis. Scientific Reports, 7(1), 6352.PubMedPubMedCentralGoogle Scholar
  297. 297.
    Andley, U. P. (2008). The lens epithelium: Focus on the expression and function of the alpha-crystallin chaperones. The International Journal of Biochemistry & Cell Biology, 40(3), 317–323.Google Scholar
  298. 298.
    Ronci, M., Sharma, S., Chataway, T., Burdon, K. P., Martin, S., Craig, J. E., et al. (2011). MALDI-MS-imaging of whole human Lens capsule. Journal of Proteome Research, 10(8), 3522–3529.PubMedGoogle Scholar
  299. 299.
    Han, J., & Schey, K. L. (2006). MALDI tissue imaging of ocular lens α-Crystallin. Investigative Ophthalmology & Visual Science, 47(7), 2990–2996.Google Scholar
  300. 300.
    Grey, A. C. (2016). MALDI imaging of the eye: Mapping lipid, protein and metabolite distributions in aging and ocular disease. International Journal of Mass Spectrometry, 401, 31–38.Google Scholar
  301. 301.
    Grey, A. C., & Schey, K. L. (2009). Age-related changes in the spatial distribution of human lens alpha-crystallin products by MALDI imaging mass spectrometry. Investigative Ophthalmology & Visual Science, 50(9), 4319–4329.Google Scholar
  302. 302.
    Stella, D. R., Floyd, K. A., Grey, A. C., Renfrow, M. B., Schey, K. L., & Barnes, S. (2010). Tissue localization and solubilities of αA-crystallin and its numerous C-terminal truncation products in pre- and postcataractous ICR/f rat lenses. Investigative Ophthalmology & Visual Science, 51(10), 5153–5161.Google Scholar
  303. 303.
    Nye-Wood, M. G., Spraggins, J. M., Caprioli, R. M., Schey, K. L., Donaldson, P. J., & Grey, A. C. (2017). Spatial distributions of glutathione and its endogenous conjugates in normal bovine lens and a model of lens aging. Experimental Eye Research, 154, 70–78.PubMedGoogle Scholar
  304. 304.
    Grey, A. C., Chaurand, P., Caprioli, R. M., & Schey, K. L. (2009). MALDI imaging mass spectrometry of integral membrane proteins from ocular Lens and retinal tissue. Journal of Proteome Research, 8(7), 3278–3283.PubMedPubMedCentralGoogle Scholar
  305. 305.
    Jiao, J., Miao, A., Zhang, Y., Fan, Q., Lu, Y., & Lu, H. (2015). Imaging phosphorylated peptide distribution in human lens by MALDI MS. Analyst, 140(12), 4284–4290.PubMedGoogle Scholar
  306. 306.
    Mukherjee, P., & Mani, S. (2013). Methodologies to decipher the cell secretome. Biochimica et Biophysica Acta, 1834(11), 2226–2232.PubMedPubMedCentralGoogle Scholar
  307. 307.
    Yadav, N., Khurana, S. M., & Yadav, D. (2015). Plant secretomics: Unique initiatives. PlantOmics, 2015, 357–384.Google Scholar
  308. 308.
    Green-Mitchell, S. M., Cazares, L. H., Semmes, O. J., Nadler, J. L., & Nyalwidhe, J. O. (2011). On-tissue identification of insulin: In situ reduction coupled with mass spectrometry imaging. Proteomics. Clinical Applications, 5(7–8), 448–453.PubMedPubMedCentralGoogle Scholar
  309. 309.
    Schulz, S., Römpp, A., Kummer, W., & Spengler, B. (2011). AP-MALDI imaging of neuropeptides in mouse pituitary gland with 5 μm spatial resolution and high mass accuracy. International Journal of Mass Spectrometry, 305, 228–237.Google Scholar
  310. 310.
    Oliva, R., Martínez-Heredia, J., & Estanyol, J. M. (2008). Proteomics in the study of the sperm cell composition, differentiation and function. Systems Biology in Reproductive Medicine, 54(1), 23–36.PubMedGoogle Scholar
  311. 311.
    Lagarrigue, M., Lavigne, R., Guével, B., Com, E., Chaurand, P., & Pineau, C. (2012). Matrix-assisted laser desorption/ionization imaging mass spectrometry: A promising technique for reproductive research. Biology of Reproduction, 86(3), 74, 1-11-74, 1-11.PubMedGoogle Scholar
  312. 312.
    Lagarrigue, M., Becker, M., Lavigne, R., Deininger, S.-O., Walch, A., Aubry, F., et al. (2011). Revisiting rat spermatogenesis with MALDI imaging at 20-microm resolution. Molecular & Cellular Proteomics : MCP, 10(3), M110.005991.Google Scholar
  313. 313.
    Mondon, P., Hillion, M., Peschard, O., Andre, N., Marchand, T., Doridot, E., et al. (2015). Evaluation of dermal extracellular matrix and epidermal–dermal junction modifications using matrix-assisted laser desorption/ionization mass spectrometric imaging, in vivo reflectance confocal microscopy, echography, and histology: Effect of age and peptide applications. Journal of Cosmetic Dermatology, 14(2), 152–160.PubMedGoogle Scholar
  314. 314.
    Stefanov, I., & Simeonov, R. (2018). Histochemical and morphometric studies of connective tissue fibres in canine paranal sinus. Bulgarian Journal of Veterinary Medicine, 14(3), 171–178.Google Scholar
  315. 315.
    Gelse, K., Pöschl, E., & Aigner, T. (2003). Collagens—Structure, function, and biosynthesis. Advanced Drug Delivery Reviews, 55(12), 1531–1546.PubMedGoogle Scholar
  316. 316.
    Holzlechner, M., Strasser, K., Zareva, E., Steinhäuser, L., Birnleitner, H., Beer, A., et al. (2017). In situ characterization of tissue-resident immune cells by MALDI mass spectrometry imaging. Journal of Proteome Research, 16(1), 65–76.PubMedGoogle Scholar
  317. 317.
    Cillero-Pastor, B., Eijkel, G. B., Kiss, A., Blanco, F. J., & Heeren, R. M. A. (2013). Matrix-assisted laser desorption ionization–imaging mass spectrometry: A new methodology to study human osteoarthritic cartilage. Arthritis and Rheumatism, 65(3), 710–720.PubMedGoogle Scholar
  318. 318.
    Rocha, B., Cillero-Pastor, B., Blanco, F. J., & Ruiz-Romero, C. (2017). MALDI mass spectrometry imaging in rheumatic diseases. Biochimica et Biophysica Acta (BBA). Proteins and Proteomics, 1865(7), 784–794.Google Scholar
  319. 319.
    Briggs, M. T., Kuliwaba, J. S., Muratovic, D., Everest-Dass, A. V., Packer, N. H., Findlay, D. M., et al. (2016). MALDI mass spectrometry imaging of N-glycans on tibial cartilage and subchondral bone proteins in knee osteoarthritis. Proteomics, 16(11–12), 1736–1741.PubMedGoogle Scholar
  320. 320.
    Peffers, M. J., Cillero-Pastor, B., Eijkel, G. B., Clegg, P. D., & Heeren, R. M. A. (2014). Matrix assisted laser desorption ionization mass spectrometry imaging identifies markers of ageing and osteoarthritic cartilage. Arthritis Research & Therapy, 16(3), R110.Google Scholar
  321. 321.
    Centeno, D., Vénien, A., Pujos-Guillot, E., Astruc, T., Chambon, C., & Théron, L. (2017). Myofiber metabolic type determination by mass spectrometry imaging. Journal of Mass Spectrometry, 52(8), 493–496.PubMedGoogle Scholar
  322. 322.
    Klein, O., Strohschein, K., Nebrich, G., Oetjen, J., Trede, D., Thiele, H., et al. (2014). MALDI imaging mass spectrometry: Discrimination of pathophysiological regions in traumatized skeletal muscle by characteristic peptide signatures. Proteomics, 14(20), 2249–2260.PubMedGoogle Scholar
  323. 323.
    Shintani-Domoto, Y., Hayasaka, T., Maeda, D., Masaki, N., Ito, T. K., Sakuma, K., et al. (2017). Different desmin peptides are distinctly deposited in cytoplasmic aggregations and cytoplasm of desmin-related cardiomyopathy patients. Biochimica et Biophysica Acta (BBA). Proteins and Proteomics, 1865(7), 828–836.Google Scholar
  324. 324.
    Noronha, A. M., Linden, C., & Sharma, P. (2016). Developments in cardiovascular proteomics. Journal of Proteomics & Bioinformatics, 9, 144–150.Google Scholar
  325. 325.
    Kakimoto, Y., Ito, S., Abiru, H., Kotani, H., Ozeki, M., Tamaki, K., et al. (2013). Sorbin and SH3 domain-containing protein 2 is released from infarcted heart in the very early phase: Proteomic analysis of cardiac tissues from patients. Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease, 2(6), e000565.Google Scholar
  326. 326.
    Lefcoski, S., Kew, K., Reece, S., Torres, M. J., Parks, J., Reece, S., et al. (2018). Anatomical-molecular distribution of EphrinA1 in infarcted mouse heart using MALDI mass spectrometry imaging. Journal of the American Society for Mass Spectrometry, 29(3), 527–534.PubMedPubMedCentralGoogle Scholar
  327. 327.
    Bayés, A., & Grant, S. G. N. (2009). Neuroproteomics: Understanding the molecular organization and complexity of the brain. Nature Reviews Neuroscience, 10, 635.PubMedGoogle Scholar
  328. 328.
    Gemperline, E., Chen, B., & Li, L. (2014). Challenges and recent advances in mass spectrometric imaging of neurotransmitters. Bioanalysis, 6(4), 525–540.PubMedPubMedCentralGoogle Scholar
  329. 329.
    Zimmerman, T., Rubakhin, S., & Sweedler, J. (2011). MALDI mass spectrometry imaging of neuronal cell cultures. Journal of the American Society for Mass Spectrometry, 22(5), 828–836.PubMedPubMedCentralGoogle Scholar
  330. 330.
    Ong, T.-H., Romanova, E. V., Roberts-Galbraith, R. H., Yang, N., Zimmerman, T. A., Collins, J. J., et al. (2016). Mass spectrometry imaging and identification of peptides associated with cephalic ganglia regeneration in Schmidtea mediterranea. Journal of Biological Chemistry, 291(15), 8109–8120.PubMedGoogle Scholar
  331. 331.
    Chen, R., Ouyang, C., Xiao, M., & Li, L. (2014). In situ identification and mapping of neuropeptides from the stomatogastric nervous system of Cancer borealis. Rapid Communications in Mass Spectrometry, 28(22), 2437–2444.PubMedGoogle Scholar
  332. 332.
    Paine, M. R. L., Ellis, S. R., Maloney, D., Heeren, R. M. A., & Verhaert, P. D. E. M. (2018). Digestion-free analysis of peptides from 30-year-old formalin-fixed, paraffin-embedded tissue by mass spectrometry imaging. Analytical Chemistry, 90(15), 9272–9280.PubMedPubMedCentralGoogle Scholar
  333. 333.
    Ye, H., Hui, L., Kellersberger, K., & Li, L. (2013). Mapping of neuropeptides in the crustacean stomatogastric nervous system by imaging mass spectrometry. Journal of the American Society for Mass Spectrometry, 24(1), 134–147.PubMedGoogle Scholar
  334. 334.
    Crecelius, A. C., Cornett, D. S., Caprioli, R. M., Williams, B., Dawant, B. M., & Bodenheimer, B. (2005). Three-dimensional visualization of protein expression in mouse brain structures using imaging mass spectrometry. Journal of the American Society for Mass Spectrometry, 16(7), 1093–1099.PubMedGoogle Scholar
  335. 335.
    Schober, Y., Schramm, T., Spengler, B., & Römpp, A. (2011). Protein identification by accurate mass matrix-assisted laser desorption/ionization imaging of tryptic peptides. Rapid Communications in Mass Spectrometry, 25(17), 2475–2483.PubMedGoogle Scholar
  336. 336.
    Tucker, K. R., Serebryannyy, L. A., Zimmerman, T. A., Rubakhin, S. S., & Sweedler, J. V. (2011). The modified-bead stretched sample method: Development and application to MALDI-MS imaging of protein localization in the spinal cord. Chemical Science, 2(4), 785–795.PubMedPubMedCentralGoogle Scholar
  337. 337.
    Sui, P., Watanabe, H., Artemenko, K., Sun, W., Bakalkin, G., Andersson, M., et al. (2017). Neuropeptide imaging in rat spinal cord with MALDI-TOF MS: Method development for the application in pain-related disease studies. European Journal of Mass Spectrometry, 23, 105–115.PubMedGoogle Scholar
  338. 338.
    Rubakhin, S. S., Ulanov, A., & Sweedler, J. V. (2015). Mass spectrometry imaging and GC-MS profiling of the mammalian peripheral sensory-motor circuit. Journal of the American Society for Mass Spectrometry, 26(6), 958–966.PubMedPubMedCentralGoogle Scholar
  339. 339.
    González de San Román, E., Bidmon, H.-J., Malisic, M., Susnea, I., Küppers, A., Hübbers, R., et al. (2018). Molecular composition of the human primary visual cortex profiled by multimodal mass spectrometry imaging. Brain Structure & Function, 223(6), 2767–2783.Google Scholar
  340. 340.
    Liu, X., Ide, J. L., Norton, I., Marchionni, M. A., Ebling, M. C., Wang, L. Y., et al. (2013). Molecular imaging of drug transit through the blood-brain barrier with MALDI mass spectrometry imaging. Scientific Reports, 3, 2859.PubMedPubMedCentralGoogle Scholar
  341. 341.
    Wang, J. S. H., Freitas-Andrade, M., Bechberger, J. F., Naus, C. C., Yeung, K. K.-C., & Whitehead, S. N. (2018). Matrix-assisted laser desorption/ionization imaging mass spectrometry of intraperitoneally injected danegaptide (ZP1609) for treatment of stroke-reperfusion injury in mice. Rapid Communications in Mass Spectrometry, 32(12), 951–958.PubMedGoogle Scholar
  342. 342.
    Delcourt, V., Franck, J., Quanico, J., Gimeno, J.-P., Wisztorski, M., Raffo-Romero, A., et al. (2018). Spatially-resolved top-down proteomics bridged to MALDI MS imaging reveals the molecular Physiome of brain regions. Molecular & Cellular Proteomics, 17(2), 357–372.Google Scholar
  343. 343.
    Majava, V., Polverini, E., Mazzini, A., Nanekar, R., Knoll, W., Peters, J., et al. (2010). Structural and functional characterization of human peripheral nervous system myelin protein P2. PLoS One, 5(4), e10300.PubMedPubMedCentralGoogle Scholar
  344. 344.
    Iloro, I., Fernández-Irigoyen, J., Escobes, I., Azkargorta, M., Santamaría, E., & Elortza, F. (2017). Methods for human olfactory bulb tissue studies using peptide/protein MALDI-TOF imaging mass spectrometry (MALDI-IMS). In E. Santamaría & J. Fernández-Irigoyen (Eds.), Current proteomic approaches applied to brain function (pp. 91–106). New York: Springer.Google Scholar
  345. 345.
    Ye, H., Mandal, R., Catherman, A., Thomas, P. M., Kelleher, N. L., Ikonomidou, C., et al. (2014). Top-down proteomics with mass spectrometry imaging: A pilot study towards discovery of biomarkers for neurodevelopmental disorders. PLoS One, 9(4), e92831.PubMedPubMedCentralGoogle Scholar
  346. 346.
    Hanrieder, J., Ekegren, T., Andersson, M., & Bergquist, J. (2013). MALDI imaging of post-mortem human spinal cord in amyotrophic lateral sclerosis. Journal of Neurochemistry, 124(5), 695–707.PubMedGoogle Scholar
  347. 347.
    Winter, M., Tholey, A., Kristen, A., & Röcken, C. (2017). MALDI mass spectrometry imaging: A novel tool for the identification and classification of amyloidosis. Proteomics, 17(22), 1700236.PubMedCentralGoogle Scholar
  348. 348.
    Kakuda, N., Miyasaka, T., Iwasaki, N., Nirasawa, T., Wada-Kakuda, S., Takahashi-Fujigasaki, J., et al. (2017). Distinct deposition of amyloid-β species in brains with Alzheimer’s disease pathology visualized with MALDI imaging mass spectrometry. Acta Neuropathologica Communications, 5, 73.PubMedPubMedCentralGoogle Scholar
  349. 349.
    Ho Kim, J., Franck, J., Kang, T., Heinsen, H., Ravid, R., Ferrer, I., et al. (2015). Proteome-wide characterization of signalling interactions in the hippocampal CA4/DG subfield of patients with Alzheimer’s disease. Scientific Reports, 5, 11138.PubMedPubMedCentralGoogle Scholar
  350. 350.
    Casaletto, K. B., Elahi, F. M., Bettcher, B. M., Neuhaus, J., Bendlin, B. B., Asthana, S., et al. (2017). Neurogranin, a synaptic protein, is associated with memory independent of Alzheimer biomarkers. Neurology, 89(17), 1782–1788.PubMedPubMedCentralGoogle Scholar
  351. 351.
    Esteve, C., Jones, E. A., Kell, D. B., Boutin, H., & McDonnell, L. A. (2017). Mass spectrometry imaging shows major derangements in neurogranin and in purine metabolism in the triple-knockout 3×Tg Alzheimer mouse model. Biochimica et Biophysica Acta (BBA). Proteins and Proteomics, 1865(7), 747–754.Google Scholar
  352. 352.
    Reglodi, D., Jungling, A., Longuespée, R., Kriegsmann, J., Casadonte, R., Kriegsmann, M., et al. (2018). Accelerated pre-senile systemic amyloidosis in PACAP knockout mice - A protective role of PACAP in age-related degenerative processes. The Journal of Pathology, 245(4), 478–490.PubMedPubMedCentralGoogle Scholar
  353. 353.
    Maccarrone, G., Nischwitz, S., Deininger, S.-O., Hornung, J., König, F. B., Stadelmann, C., et al. (2017). MALDI imaging mass spectrometry analysis—A new approach for protein mapping in multiple sclerosis brain lesions. Journal of Chromatography B, 1047, 131–140.Google Scholar
  354. 354.
    Llombart, V., Trejo, S. A., Bronsoms, S., Morancho, A., Feifei, M., Faura, J., et al. (2017). Profiling and identification of new proteins involved in brain ischemia using MALDI-imaging-mass-spectrometry. Journal of Proteomics, 152, 243–253.PubMedGoogle Scholar
  355. 355.
    Lalowski, M., Magni, F., Mainini, V., Monogioudi, E., Gotsopoulos, A., Soliymani, R., et al. (2013). Imaging mass spectrometry: A new tool for kidney disease investigations. Nephrology Dialysis Transplantation, 28(7), 1648–1656.Google Scholar
  356. 356.
    Magni, F., Lalowski, M., Mainini, V., Marchetti-Deschmann, M., Chinello, C., Urbani, A., et al. (2012). Proteomics imaging and the kidney. Journal of Nephrology, 26, 430–436.PubMedGoogle Scholar
  357. 357.
    Grobe, N., Elased, K. M., Cool, D. R., & Morris, M. (2012). Mass spectrometry for the molecular imaging of angiotensin metabolism in kidney. American Journal of Physiology. Endocrinology and Metabolism, 302(8), E1016–E1024.PubMedPubMedCentralGoogle Scholar
  358. 358.
    Smith, A., L’Imperio, V., Sio, G., Ferrario, F., Scalia, C., Dell’Antonio, G., et al. (2016). α-1-Antitrypsin detected by MALDI imaging in the study of glomerulonephritis: Its relevance in chronic kidney disease progression. Proteomics, 16(11–12), 1759–1766.PubMedGoogle Scholar
  359. 359.
    Smith, A., L’Imperio, V., Ajello, E., Ferrario, F., Mosele, N., Stella, M., et al. (2017). The putative role of MALDI-MSI in the study of membranous nephropathy. Biochimica et Biophysica Acta (BBA). Proteins and Proteomics, 1865(7), 865–874.Google Scholar
  360. 360.
    Casadonte, R., Kriegsmann, M., Deininger, S.-O., Amann, K., Paape, R., Belau, E., et al. (2015). Imaging mass spectrometry analysis of renal amyloidosis biopsies reveals protein co-localization with amyloid deposits. Analytical and Bioanalytical Chemistry, 407, 5323–5331.PubMedGoogle Scholar
  361. 361.
    Winter, M., Tholey, A., Krüger, S., Schmidt, H., & Röcken, C. (2015). MALDI-mass spectrometry imaging identifies vitronectin as a common constituent of amyloid deposits. The Journal of Histochemistry and Cytochemistry : Official Journal of the Histochemistry Society, 63(10), 772–779.Google Scholar
  362. 362.
    Kriegsmann, J., Kriegsmann, M., & Casadonte, R. (2015). MALDI TOF imaging mass spectrometry in clinical pathology: A valuable tool for cancer diagnostics (review). International Journal of Oncology, 46(3), 893–906.PubMedGoogle Scholar
  363. 363.
    Le Rhun, E., Duhamel, M., Wisztorski, M., Gimeno, J.-P., Zairi, F., Escande, F., et al. (2017). Evaluation of non-supervised MALDI mass spectrometry imaging combined with microproteomics for glioma grade III classification. Biochimica et Biophysica Acta (BBA). Proteins and Proteomics, 1865(7), 875–890.Google Scholar
  364. 364.
    Boskamp, T., Lachmund, D., Oetjen, J., Cordero Hernandez, Y., Trede, D., Maass, P., et al. (2017). A new classification method for MALDI imaging mass spectrometry data acquired on formalin-fixed paraffin-embedded tissue samples. Biochimica et Biophysica Acta (BBA). Proteins and Proteomics, 1865(7), 916–926.Google Scholar
  365. 365.
    Rebours, V., Le Faouder, J., Laouirem, S., Mebarki, M., Albuquerque, M., Camadro, J.-M., et al. (2013). In situ proteomic analysis by MALDI imaging identifies Ubiquitin and Thymosin-β4 as markers of malignant intraductal pancreatic mucinous neoplasms. Pancreatology, 14, 117–124.PubMedGoogle Scholar
  366. 366.
    Djidja, M.-C., Claude, E., Snel, M. F., Scriven, P., Francese, S., Carolan, V., et al. (2009). MALDI-ion mobility separation-mass spectrometry imaging of glucose-regulated protein 78 kDa (Grp78) in human formalin-fixed, paraffin-embedded pancreatic adenocarcinoma tissue sections. Journal of Proteome Research, 8(10), 4876–4884.PubMedGoogle Scholar
  367. 367.
    Zhou, X., Liao, W.-J., Liao, J.-M., Liao, P., & Lu, H. (2015). Ribosomal proteins: Functions beyond the ribosome. Journal of Molecular Cell Biology, 7(2), 92–104.PubMedPubMedCentralGoogle Scholar
  368. 368.
    Mittal, P., Klingler-Hoffmann, M., Arentz, G., Winderbaum, L., Kaur, G., Anderson, L., et al. (2016). Annexin A2 and alpha actinin 4 expression correlates with metastatic potential of primary endometrial cancer. Biochimica et Biophysica Acta (BBA). Proteins and Proteomics, 1865, 846–857.Google Scholar
  369. 369.
    Zhang, C., Arentz, G., Winderbaum, L., Lokman, N. A., Klingler-Hoffmann, M., Mittal, P., et al. (2016). MALDI mass spectrometry imaging reveals decreased CK5 levels in vulvar squamous cell carcinomas compared to the precursor lesion differentiated vulvar intraepithelial neoplasia. International Journal of Molecular Sciences, 17(7), 1088.PubMedCentralGoogle Scholar
  370. 370.
    Delcourt, V., Franck, J., Leblanc, E., Narducci, F., Robin, Y.-M., Gimeno, J.-P., et al. (2017). Combined mass spectrometry imaging and top-down microproteomics reveals evidence of a hidden proteome in ovarian cancer. eBioMedicine, 21, 55–64.PubMedPubMedCentralGoogle Scholar
  371. 371.
    Lemaire, R., Ait Menguellet, S., Stauber, J., Marchaudon, V., Lucot, J.-P., Collinet, P., et al. (2007). Specific MALDI imaging and profiling for biomarker hunting and validation: Fragment of the 11S proteasome activator complex, Reg alpha fragment, is a new potential ovary cancer biomarker. Journal of Proteome Research, 6(11), 4127–4134.PubMedGoogle Scholar
  372. 372.
    Gagnon, H., Franck, J., Wisztorski, M., Day, R., Fournier, I., & Salzet, M. (2012). Targeted mass spectrometry imaging: Specific targeting mass spectrometry imaging technologies from history to perspective. Progress in Histochemistry and Cytochemistry, 47(3), 133–174.PubMedGoogle Scholar
  373. 373.
    Nazari, M., Bokhart, M. T., Loziuk, P. L., & Muddiman, D. C. (2018). Quantitative mass spectrometry imaging of glutathione in healthy and cancerous hen ovarian tissue sections by infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI). Analyst, 143(3), 654–661.PubMedPubMedCentralGoogle Scholar
  374. 374.
    Rauser, S., Marquardt, C., Balluff, B., Deininger, S.-O., Albers, C., Belau, E., et al. (2010). Classification of HER2 receptor status in breast Cancer tissues by MALDI imaging mass spectrometry. Journal of Proteome Research, 9(4), 1854–1863.PubMedGoogle Scholar
  375. 375.
    Djidja, M.-C., Chang, J., Hadjiprocopis, A., Schmich, F., Sinclair, J., Mršnik, M., et al. (2014). Identification of hypoxia-regulated proteins using MALDI-mass spectrometry imaging combined with quantitative proteomics. Journal of Proteome Research, 13(5), 2297–2313.PubMedGoogle Scholar
  376. 376.
    Végvári, Á., Shavkunov, A. S., Fehniger, T. E., Grabau, D., Niméus, E., & Marko-Varga, G. (2016). Localization of tamoxifen in human breast cancer tumors by MALDI mass spectrometry imaging. Clinical and Translational Medicine, 5, 10.PubMedPubMedCentralGoogle Scholar
  377. 377.
    Dekker, T. J. A., Balluff, B. D., Jones, E. A., Schöne, C. D., Schmitt, M., Aubele, M., et al. (2014). Multicenter matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) identifies proteomic differences in breast-Cancer-associated stroma. Journal of Proteome Research, 13(11), 4730–4738.PubMedGoogle Scholar
  378. 378.
    Steurer, S., Borkowski, C., Odinga, S., Buchholz, M., Koop, C., Huland, H., et al. (2013). MALDI mass spectrometric imaging based identification of clinically relevant signals in prostate cancer using large-scale tissue microarrays. International Journal of Cancer, 133(4), 920–928.PubMedGoogle Scholar
  379. 379.
    Panderi, I., Yakirevich, E., Papagerakis, S., Noble, L., Lombardo, K., & Pantazatos, D. (2017). Differentiating tumor heterogeneity in formalin-fixed paraffin-embedded (FFPE) prostate adenocarcinoma tissues using principal component analysis of matrix-assisted laser desorption/ionization imaging mass spectral data. Rapid Communications in Mass Spectrometry, 31(2), 160–170.PubMedGoogle Scholar
  380. 380.
    Lazova, R., Yang, Z., El Habr, C., Lim, Y., Choate, K. A., Seeley, E. H., et al. (2017). Mass spectrometry imaging can distinguish on a proteomic level between proliferative nodules within a benign congenital nevus and malignant melanoma. The American Journal of Dermatopathology, 39(9), 689–695.PubMedPubMedCentralGoogle Scholar
  381. 381.
    Guran, R., Vanickova, L., Horak, V., Krizkova, S., Michalek, P., Heger, Z., et al. (2017). MALDI MSI of MeLiM melanoma: Searching for differences in protein profiles. PLoS One, 12(12), e0189305.PubMedPubMedCentralGoogle Scholar
  382. 382.
    Vanickova, L., Guran, R., Kollár, S., Emri, G., Krizkova, S., Do, T., et al. (2019). Mass spectrometric imaging of cysteine rich proteins in human skin. International Journal of Biological Macromolecules, 125, 270–277.PubMedGoogle Scholar
  383. 383.
    Hardesty, W. M., Kelley, M. C., Mi, D., Low, R. L., & Caprioli, R. M. (2011). Protein signatures for survival and recurrence in metastatic melanoma. Journal of Proteomics, 74(7), 1002–1014.PubMedPubMedCentralGoogle Scholar
  384. 384.
    Smith, A., Piga, I., Galli, M., Stella, M., Denti, V., Del Puppo, M., et al. (2017). Matrix-assisted laser desorption/ionisation mass spectrometry imaging in the study of gastric Cancer: A mini review. International Journal of Molecular Sciences, 18(12), 2588.PubMedCentralGoogle Scholar
  385. 385.
    Balluff, B., Rauser, S., Meding, S., Elsner, M., Schöne, C., Feuchtinger, A., et al. (2011). MALDI imaging identifies prognostic seven-protein signature of novel tissue markers in intestinal-type gastric cancer. The American Journal of Pathology, 179(6), 2720–2729.PubMedPubMedCentralGoogle Scholar
  386. 386.
    Gemoll, T., Strohkamp, S., Schillo, K., Thorns, C., & Habermann, J. K. (2015). MALDI-imaging reveals thymosin beta-4 as an independent prognostic marker for colorectal cancer. Oncotarget, 6(41), 43869–43880.PubMedPubMedCentralGoogle Scholar
  387. 387.
    Steurer, S., Seddiqi, A. S., Singer, J. M., Bahar, A. S., Eichelberg, C., Rink, M., et al. (2014). MALDI imaging on tissue microarrays identifies molecular features associated with renal cell Cancer phenotype. Anticancer Research, 34(5), 2255–2261.PubMedGoogle Scholar
  388. 388.
    Na, C. H., Hong, J. H., Kim, W. S., Shanta, S. R., Bang, J. Y., Park, D., et al. (2015). Identification of protein markers specific for papillary renal cell carcinoma using imaging mass spectrometry. Molecules and Cells, 38(7), 624–629.PubMedPubMedCentralGoogle Scholar
  389. 389.
    Calligaris, D., Feldman, D. R., Norton, I., Olubiyi, O., Changelian, A. N., Machaidze, R., et al. (2015). MALDI mass spectrometry imaging analysis of pituitary adenomas for near-real-time tumor delineation. Proceedings of the National Academy of Sciences, 112(32), 9978–9983.Google Scholar
  390. 390.
    Powers, T. W., Jones, E. E., Betesh, L. R., Romano, P., Gao, P., Copland, J. A., et al. (2013). A MALDI imaging mass spectrometry workflow for spatial profiling analysis of N-linked glycan expression in tissues. Analytical Chemistry, 85(20), 9799–9806.PubMedPubMedCentralGoogle Scholar
  391. 391.
    Gustafsson, O. J. R., Briggs, M. T., Condina, M. R., Winderbaum, L. J., Pelzing, M., McColl, S. R., et al. (2015). MALDI imaging mass spectrometry of N-linked glycans on formalin-fixed paraffin-embedded murine kidney. Analytical and Bioanalytical Chemistry, 407(8), 2127–2139.PubMedGoogle Scholar
  392. 392.
    Min, K.-W., Bang, J.-Y., Kim, K. P., Kim, W.-S., Lee, S. H., Shanta, S. R., et al. (2014). Imaging mass spectrometry in papillary thyroid carcinoma for the identification and validation of biomarker proteins. Journal of Korean Medical Science, 29(7), 934–940.PubMedPubMedCentralGoogle Scholar
  393. 393.
    Pagni, F., Sio, G., Garancini, M., Scardilli, M., Chinello, C., Smith, A. J., et al. (2016). Proteomics in thyroid cytopathology: Relevance of MALDI-imaging in distinguishing malignant from benign lesions. Proteomics, 16(11–12), 1775–1784.PubMedGoogle Scholar
  394. 394.
    Pietrowska, M., Diehl, H. C., Mrukwa, G., Kalinowska-Herok, M., Gawin, M., Chekan, M., et al. (2017). Molecular profiles of thyroid cancer subtypes: Classification based on features of tissue revealed by mass spectrometry imaging. Biochimica et Biophysica Acta (BBA). Proteins and Proteomics, 1865(7), 837–845.Google Scholar
  395. 395.
    Biron, D. G., Marché, L., Ponton, F., Loxdale, H. D., Galéotti, N., Renault, L., et al. (2005). Behavioural manipulation in a grasshopper harbouring hairworm: A proteomics approach. Proceedings of the Royal Society B: Biological Sciences, 272(1577), 2117–2126.PubMedGoogle Scholar
  396. 396.
    Biron, D., Moura, H., Marche, L., Hughes, A., & Thomas, F. (2005). Towards a new conceptual approach to ‘parasitoproteomics’. Trends in Parasitology, 21, 162–168.PubMedGoogle Scholar
  397. 397.
    Biron, D. G., & Loxdale, H. D. (2013). Host–parasite molecular cross-talk during the manipulative process of a host by its parasite. The Journal of Experimental Biology, 216(1), 148–160.PubMedGoogle Scholar
  398. 398.
    Jaegger, C. F., Negrão, F., Assis, D. M., Belaz, K. R. A., Angolini, C. F. F., Fernandes, A. M. A. P., et al. (2017). MALDI MS imaging investigation of the host response to visceral leishmaniasis. Molecular BioSystems, 13(10), 1946–1953.PubMedGoogle Scholar
  399. 399.
    Negrão, F., Rocha, D. F. d. O., Jaeeger, C. F., Rocha, F. J. S., Eberlin, M. N., & Giorgio, S. (2017). Murine cutaneous leishmaniasis investigated by MALDI mass spectrometry imaging. Molecular BioSystems, 13(10), 2036–2043.PubMedGoogle Scholar
  400. 400.
    Pieri, M., Lombardi, A., Basilicata, P., Mamone, G., & Picariello, G. (2018). Proteomics in forensic sciences: Identification of the nature of the last meal at autopsy. Journal of Proteome Research, 17(7), 2412–2420.PubMedGoogle Scholar
  401. 401.
    Procopio, N., Williams, A., Chamberlain, A. T., & Buckley, M. (2018). Forensic proteomics for the evaluation of the post-mortem decay in bones. Journal of Proteomics, 177, 21–30.PubMedGoogle Scholar
  402. 402.
    Parker, G. J., Leppert, T., Anex, D. S., Hilmer, J. K., Matsunami, N., Baird, L., et al. (2016). Demonstration of protein-based human identification using the hair shaft proteome. PLoS One, 11(9), e0160653.PubMedPubMedCentralGoogle Scholar
  403. 403.
    Duriez, E., Armengaud, J., Fenaille, F., & Ezan, E. (2016). Mass spectrometry for the detection of bioterrorism agents: From environmental to clinical applications. Journal of Mass Spectrometry, 51(3), 183–199.PubMedGoogle Scholar
  404. 404.
    Åberg, A. T., Björnstad, K., & Hedeland, M. (2013). Mass spectrometric detection of protein-based toxins. Biosecurity and Bioterrorism: Biodefense Strategy, Practice, and Science, 11(S1), S215–S226.Google Scholar
  405. 405.
    Mertz, L. (2017). New forensics methods looking more like CSI: Rapid DNA analysis, proteomics, and new technology increasingly impact forensics investigations. IEEE Pulse, 8(6), 40–45.PubMedGoogle Scholar
  406. 406.
    Deininger, L., Patel, E., Clench, M. R., Sears, V., Sammon, C., & Francese, S. (2016). Proteomics goes forensic: Detection and mapping of blood signatures in fingermarks. Proteomics, 16(11–12), 1707–1717.PubMedGoogle Scholar
  407. 407.
    Bradshaw, R., Denison, N., & Francese, S. (2017). Implementation of MALDI MS profiling and imaging methods for the analysis of real crime scene fingermarks. Analyst, 142(9), 1581–1590.PubMedGoogle Scholar
  408. 408.
    Guráň, R., Blažková, I., Kenšová, R., Richtera, L., Blažková, L., Zítka, O., et al. (2015). MALDI-TOF MSI and electrochemical detection of metallothionein in chicken liver after cadmium exposure. Journal of Metallomics and Nanotechnologies, 2(3), 43–49.Google Scholar
  409. 409.
    Lagarrigue, M., Caprioli, R. M., & Pineau, C. (2016). Potential of MALDI imaging for the toxicological evaluation of environmental pollutants. Journal of Proteomics, 144, 133–139.PubMedPubMedCentralGoogle Scholar
  410. 410.
    Yoshimura, Y., Goto-Inoue, N., Moriyama, T., & Zaima, N. (2016). Significant advancement of mass spectrometry imaging for food chemistry. Food Chemistry, 210, 200–211.PubMedGoogle Scholar
  411. 411.
    Francese, S., Lambardi, D., Mastrobuoni, G., la Marca, G., Moneti, G., & Turillazzi, S. (2009). Detection of honeybee venom in envenomed tissues by direct MALDI MSI. Journal of the American Society for Mass Spectrometry, 20(1), 112–123.PubMedGoogle Scholar
  412. 412.
    Maltseva, A. (2016). Application of MALDI-MSI for detection of antimicrobial peptides in tissues of the marine invertebrate Arenicola marina. Invertebrate Survival Journal, 13, 205–209.Google Scholar
  413. 413.
    Maltseva, A. L., Kotenko, O. N., Kokryakov, V. N., Starunov, V. V., & Krasnodembskaya, A. D. (2014). Expression pattern of arenicins-the antimicrobial peptides of polychaete Arenicola marina. Frontiers in Physiology, 5, 497.PubMedPubMedCentralGoogle Scholar
  414. 414.
    Baumann, T., Kämpfer, U., Schürch, S., Schaller, J., Largiader, C., Nentwig, W., et al. (2010). Ctenidins: Antimicrobial glycine-rich peptides from the hemocytes of the spider Cupiennius salei. Cellular and Molecular Life Sciences, 67, 2787–2798.PubMedGoogle Scholar
  415. 415.
    Kuhn-Nentwig, L., Kopp, L. S., Nentwig, W., Haenni, B., Streitberger, K., Schürch, S., et al. (2014). Functional differentiation of spider hemocytes by light and transmission electron microscopy, and MALDI-MS-imaging. Developmental & Comparative Immunology, 43(1), 59–67.Google Scholar
  416. 416.
    Grey, A. C., & Schey, K. L. (2008). Distribution of bovine and rabbit lens alpha-crystallin products by MALDI imaging mass spectrometry. Molecular Vision, 14, 171–179.PubMedPubMedCentralGoogle Scholar
  417. 417.
    Nicklay, J. J., Harris, G. A., Schey, K. L., & Caprioli, R. M. (2013). MALDI imaging and in situ identification of integral membrane proteins from rat brain tissue sections. Analytical Chemistry, 85(15), 7191–7196.PubMedPubMedCentralGoogle Scholar
  418. 418.
    Gregson, C. (2009). Optimization of MALDI tissue imaging and correlation with immunohistochemistry in rat kidney sections. Bioscience Horizons: The International Journal of Student Research, 2(2), 134–146.Google Scholar
  419. 419.
    Piga, I., Heijs, B., Nicolardi, S., Giusti, L., Marselli, L., Marchetti, P., et al. (2017). Ultra-high resolution MALDI-FTICR-MSI analysis of intact proteins in mouse and human pancreas tissue. International Journal of Mass Spectrometry, 437, 10–16.Google Scholar
  420. 420.
    DeKeyser, S. S., Kutz-Naber, K. K., Schmidt, J. J., Barrett-Wilt, G. A., & Li, L. (2007). Imaging mass spectrometry of neuropeptides in decapod crustacean neuronal tissues. Journal of Proteome Research, 6(5), 1782–1791.PubMedPubMedCentralGoogle Scholar
  421. 421.
    Cillero-Pastor, B., Eijkel, G., Blanco, F., & Heeren, R. (2014). Protein classification and distribution in osteoarthritic human synovial tissue by matrix-assisted laser desorption ionization mass spectrometry imaging. Analytical and Bioanalytical Chemistry, 407, 2213–2222.PubMedGoogle Scholar
  422. 422.
    Hanrieder, J., Ljungdahl, A., & Andersson, M. (2012). MALDI imaging mass spectrometry of neuropeptides in Parkinson’s disease. Journal of Visualized Experiments : JoVE, 60, 3445.Google Scholar
  423. 423.
    Mainini, V., Pagni, F., Ferrario, F., Pieruzzi, F., Grasso, M., Stella, A., et al. (2014). MALDI imaging mass spectrometry in glomerulonephritis: Feasibility study. Histopathology, 64(6), 901–906.PubMedGoogle Scholar
  424. 424.
    Anderson, D. M. G., Van de Plas, R., Rose, K. L., Hill, S., Schey, K. L., Solga, A. C., et al. (2016). 3-D imaging mass spectrometry of protein distributions in mouse Neurofibromatosis 1 (NF1)-associated optic glioma. Journal of Proteomics, 149, 77–84.PubMedPubMedCentralGoogle Scholar
  425. 425.
    Smith, A., Galli, M., Piga, I., Denti, V., Stella, M., Chinello, C., et al. (2019). Molecular signatures of medullary thyroid carcinoma by matrix-assisted laser desorption/ionisation mass spectrometry imaging. Journal of Proteomics, 191, 114–123.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratory of Animal Histology, Faculty of Biology“Alexandru Ioan Cuza” University of IasiIasiRomania

Personalised recommendations