MALDI Profiling and Applications in Medicine

  • Ed DudleyEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1140)


Matrix assisted laser desorption ionization (MALDI) mass spectrometry allows for the rapid profiling of different biomolecular species from both biofluids and tissues. Whilst originally focused upon the analysis of intact proteins and peptides, MALDI mass spectrometry has found further applications in lipidomic analysis, genotyping, microorganism identification, biomarker discovery and metabolomics. The combining of multiple profiles data from differing locations across a sample furthermore, allows for spatial distribution of biomolecules to be established utilizing imaging MALDI analysis. This chapter discusses the MALDI process, its usual applications in the field of protein identification via peptide mass fingerprinting before focusing upon advances in the application of the profiling potential of MALDI mass spectrometry and its’ various applications in biomedicine.


MALDI Peptidomics Single nucleotide polymorphisms Microorganism identification Biomarker discovery 


  1. 1.
    Cho, D., Hong, S., & Shim, S. (2013). Few layer graphene matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Journal of Nanoscience and Nanotechnology, 13(8), 5811–5813.PubMedGoogle Scholar
  2. 2.
    Wang, X., Han, J., Chou, A., Yang, J., Pan, J., & Borchers, C. H. (2013). Hydroxyflavones as a new family of matrices for MALDI tissue imaging. Analytical Chemistry, 85(15), 7566–7573.PubMedGoogle Scholar
  3. 3.
    Gao, X., Bi, X., Wei, J., Peng, Z., Liu, H., Jiang, Y., et al. (2013). N-phosphorylation labeling for analysis of twenty natural amino acids and small peptides by using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The Analyst, 138(9), 2632–2639.PubMedGoogle Scholar
  4. 4.
    Merrell, K., Southwick, K., Graves, S. W., Esplin, M. S., Lewis, N. E., & Thulin, C. D. (2004). Analysis of low-abundance, low-molecular-weight serum proteins using mass spectrometry. Journal of Biomolecular Techniques, 15(4), 238–248.PubMedGoogle Scholar
  5. 5.
    Fania, C., Vasso, M., Torretta, E., Robach, P., Cairo, G., Lundby, C., et al. (2011). Setup for human sera MALDI profiling: The case of rhEPO treatment. Electrophoresis, 32(13), 1715–1727.PubMedGoogle Scholar
  6. 6.
    Bellei, E., Monari, E., Bergamini, S., Ozben, T., & Tomasi, A. (2011). Optimizing protein recovery yield from serum samples treated with beads technology. Electrophoresis, 32(12), 1414–1421.PubMedGoogle Scholar
  7. 7.
    Callesen, A. K., Christensen, R., Madsen, J. S., Vach, W., Zapico, E., Cold, S., et al. (2008). Reproducibility of serum protein profiling by systematic assessment using solid-phase extraction and matrix-assisted laser desorption/ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 22(3), 291–300.PubMedGoogle Scholar
  8. 8.
    Fiedler, G. M., Baumann, S., Leichtle, A., Oltmann, A., Kase, J., Thiery, J., et al. (2007). Standardized peptidome profiling of human urine by magnetic bead separation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clinical Chemistry, 53(3), 421–428.PubMedGoogle Scholar
  9. 9.
    Bruegel, M., Planert, M., Baumann, S., Focke, A., Bergh, F. T., Leichtle, A., et al. (2009). Standardized peptidome profiling of human cerebrospinal fluid by magnetic bead separation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Journal of Proteomics, 72(4), 608–615.PubMedGoogle Scholar
  10. 10.
    Tiss, A., Smith, C., Camuzeaux, S., Kabir, M., Gayther, S., Menon, U., et al. (2007). Serum peptide profiling using MALDI mass spectrometry: Avoiding the pitfalls of coated magnetic beads using well-established ZipTip technology. Proteomics, 7(Suppl 1), 77–89.PubMedGoogle Scholar
  11. 11.
    An, Y., & Goldman, R. (2013). Analysis of peptides by denaturing ultrafiltration and LC-MALDI-TOF-MS. Methods in Molecular Biology, 1023, 13–19.PubMedGoogle Scholar
  12. 12.
    Aresta, A., Calvano, C. D., Palmisano, F., Zambonin, C. G., Monaco, A., Tommasi, S., et al. (2008). Impact of sample preparation in peptide/protein profiling in human serum by MALDI-TOF mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 46(1), 157–164.PubMedGoogle Scholar
  13. 13.
    Gatlin, C. L., White, K. Y., Tracy, M. B., Wilkins, C. E., Semmes, O. J., Nyalwidhe, J. O., et al. (2011). Enhancement in MALDI-TOF MS analysis of the low molecular weight human serum proteome. Journal of Mass Spectrometry, 46(1), 85–89.PubMedGoogle Scholar
  14. 14.
    Tucholska, M., Scozzaro, S., Williams, D., Ackloo, S., Lock, C., Siu, K. W., et al. (2007). Endogenous peptides from biophysical and biochemical fractionation of serum analyzed by matrix-assisted laser desorption/ionization and electrospray ionization hybrid quadrupole time-of-flight. Analytical Biochemistry, 370(2), 228–245.PubMedGoogle Scholar
  15. 15.
    Kay, R., Barton, C., Ratcliffe, L., Matharoo-Ball, B., Brown, P., Roberts, J., et al. (2008). Enrichment of low molecular weight serum proteins using acetonitrile precipitation for mass spectrometry based proteomic analysis. Rapid Communications in Mass Spectrometry, 22(20), 3255–3260.PubMedGoogle Scholar
  16. 16.
    Lo, L. H., Huang, T. L., & Shiea, J. (2009). Acid hydrolysis followed by matrix-assisted laser desorption/ionization mass spectrometry for the rapid diagnosis of serum protein biomarkers in patients with major depression. Rapid Communications in Mass Spectrometry, 23(5), 589–598.Google Scholar
  17. 17.
    Li, J., Hu, X. K., & Lipson, R. H. (2013). On-chip enrichment and analysis of peptide subsets using a maleimide-functionalized fluorous affinity biochip and nanostructure initiator mass spectrometry. Analytical Chemistry, 85(11), 5499–5505.PubMedGoogle Scholar
  18. 18.
    Fumagalli, M., Ferrari, F., Luisetti, M., Stolk, J., Hiemstra, P. S., Capuano, D., et al. (2012). Profiling the proteome of exhaled breath condensate in healthy smokers and COPD patients by LC-MS/MS. International Journal of Molecular Sciences, 13(11), 13894–13910.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Qian, J. Y., Mou, S. H., & Liu, C. B. (2012). SELDI-TOF MS combined with magnetic beads for detecting serum protein biomarkers and establishment of a boosting decision tree model for diagnosis of pancreatic cancer. Asian Pacific Journal of Cancer Prevention, 13(5), 1911–1915.PubMedGoogle Scholar
  20. 20.
    Emanuele II, V. A., Panicker, G., Gurbaxani, B. M., Lin, J. M., & Unger, E. R. (2012). Sensitive and specific peak detection for SELDI-TOF mass spectrometry using a wavelet/neural-network based approach. PLoS One, 7(11), e48103.PubMedGoogle Scholar
  21. 21.
    Wan, Q. L., Hou, X. S., & Zhao, G. (2013). Utility of serum peptidome patterns of esophageal squamous cell carcinoma patients for comprehensive treatment. Asian Pacific Journal of Cancer Prevention, 14(5), 2919–2923.PubMedGoogle Scholar
  22. 22.
    van Swelm, R. P., Laarakkers, C. M., Kooijmans-Otero, M., de Jong, E. M., Masereeuw, R., & Russel, F. G. (2013). Biomarkers for methotrexate-induced liver injury: Urinary protein profiling of psoriasis patients. Toxicology Letters, 221(3), 219–224. Scholar
  23. 23.
    Chu, L., Fu, G., Meng, Q., Zhou, H., & Zhang, M. (2013). Identification of urinary biomarkers for type 2 diabetes using bead-based proteomic approach. Diabetes Research and Clinical Practice, 101(2), 187–193.PubMedGoogle Scholar
  24. 24.
    Huang, L. T., Wen, Q., Zhao, M. Z., Li, Z. B., Luo, N., Wang, Y. T., et al. (2012). Serum peptidome profiling for identifying pathological patterns in patients with primary nephrotic syndrome. Chinese Medical Journal, 125(24), 4418–4423.PubMedGoogle Scholar
  25. 25.
    Pérez, V., Sánchez-Escuredo, A., Lauzurica, R., Bayés, B., Navarro-Muñoz, M., Pastor, M. C., et al. (2013). Magnetic bead-based proteomic technology to study paricalcitol effect in kidney transplant recipients. European Journal of Pharmacology, 709(1–3), 72–79.PubMedGoogle Scholar
  26. 26.
    Alawam, K., Dudley, E., Donev, R., & Thome, J. (2012). Protein and peptide profiling as a tool for biomarker discovery in depression. Electrophoresis, 33(24), 3830–3834.Google Scholar
  27. 27.
    Huang, T. L., Cho, Y. T., Su, H., & Shiea, J. (2013). Principle component analysis combined with matrix-assisted laser desorption ionization mass spectrometry for rapid diagnosing the sera of patients with major depression. Clinica Chimica Acta, 424C, 175–181.Google Scholar
  28. 28.
    Taurines, R., Dudley, E., Conner, A. C., Grassl, J., Jans, T., Guderian, F., et al. (2010). Serum protein profiling and proteomics in autistic spectrum disorder using magnetic bead-assisted mass spectrometry. European Archives of Psychiatry and Clinical Neuroscience, 260(3), 249–255.PubMedGoogle Scholar
  29. 29.
    Quaas, A., Bahar, A. S., von Loga, K., Seddiqi, A. S., Singer, J. M., Omidi, M., et al. (2013). MALDI imaging on large-scale tissue microarrays identifies molecular features associated with tumour phenotype in oesophageal cancer. Histopathology.
  30. 30.
    Mahmoud, K., Cole, L. M., Newton, J., Mohamed, S., Al-Enazi, M., Quirke, P., et al. (2013). Detection of the epidermal growth factor receptor, amphiregulin and epiregulin in formalin-fixed paraffin-embedded human placenta tissue by matrix-assisted laser desorption/ionization mass spectrometry imaging. European Journal of Mass Spectrometry, 19(1), 17–28.PubMedGoogle Scholar
  31. 31.
    Nicklay, J. J., Harris, G. A., Schey, K. L., & Caprioli, R. M. (2013). MALDI imaging and in situ identification of integral membrane proteins from rat brain tissue sections. Analytical Chemistry, 85(15), 7191–7196.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Steven, R. T., & Bunch, J. (2013). Repeat MALDI MS imaging of a single tissue section using multiple matrices and tissue washes. Analytical and Bioanalytical Chemistry, 405(14), 4719–4728.PubMedGoogle Scholar
  33. 33.
    Qin, H., Zhao, L., Li, R., Wu, R., & Zou, H. (2011). Size-selective enrichment of N-linked glycans using highly ordered mesoporous carbon material and detection by MALDI-TOF MS. Analytical Chemistry, 83(20), 7721–7728.PubMedGoogle Scholar
  34. 34.
    Xin, L., Zhang, H., Liu, H., & Li, Z. (2012). Equal ratio of graphite carbon to activated charcoal for enrichment of N-glycopeptides prior to matrix-assisted laser desorption/ionization time-of-flight mass spectrometric identification. Rapid Communications in Mass Spectrometry, 26(3), 269–274.PubMedGoogle Scholar
  35. 35.
    Kandzia, S., & Costa, J. (2013). N-Glycosylation analysis by HPAEC-PAD and mass spectrometry. Methods in Molecular Biology, 1049, 301–312.PubMedGoogle Scholar
  36. 36.
    Selman, M. H., Hoffmann, M., Zauner, G., McDonnell, L. A., Balog, C. I., Rapp, E., et al. (2012). MALDI-TOF-MS analysis of sialylated glycans and glycopeptides using 4-chloro-α-cyanocinnamic acid matrix. Proteomics, 12(9), 1337–1348.PubMedGoogle Scholar
  37. 37.
    Watanabe, M., Terasawa, K., Kaneshiro, K., Uchimura, H., Yamamoto, R., Fukuyama, Y., et al. (2013). Improvement of mass spectrometry analysis of glycoproteins by MALDI-MS using 3-aminoquinoline/α-cyano-4-hydroxycinnamic acid. Analytical and Bioanalytical Chemistry, 405(12), 4289–4293.PubMedGoogle Scholar
  38. 38.
    Tep, S., Hincapie, M., & Hancock, W. S. (2012). A MALDI-TOF MS method for the simultaneous and quantitative analysis of neutral and sialylated glycans of CHO-expressed glycoproteins. Carbohydrate Research, 347(1), 121–129.PubMedGoogle Scholar
  39. 39.
    Hanisch, F. G. (2011). Top-down sequencing of O-glycoproteins by in-source decay matrix-assisted laser desorption ionization mass spectrometry for glycosylation site analysis. Analytical Chemistry, 83(12), 4829–4837.Google Scholar
  40. 40.
    Morelle, W., Faid, V., Chirat, F., & Michalski, J. C. (2009). Analysis of N- and O-linked glycans from glycoproteins using MALDI-TOF mass spectrometry. Methods in Molecular Biology, 534, 5–21.PubMedGoogle Scholar
  41. 41.
    Biskup, K., Braicu, E. I., Sehouli, J., Fotopoulou, C., Tauber, R., Berger, M., et al. (2013). Serum glycome profiling: A biomarker for diagnosis of ovarian cancer. Journal of Proteome Research, 12(9), 4056–4063.PubMedGoogle Scholar
  42. 42.
    Xia, B., Zhang, W., Li, X., Jiang, R., Harper, T., Liu, R., et al. (2013). Serum N-glycan and O-glycan analysis by mass spectrometry for diagnosis of congenital disorders of glycosylation. Analytical Biochemistry, 442(2), 178–185.PubMedGoogle Scholar
  43. 43.
    Hamouda, H., Ullah, M., Berger, M., Sittinger, M., Tauber, R., Ringe, J., et al. (2013). N-Glycosylation profile of undifferentiated and adipogenically differentiated human bone marrow mesenchymal stem cells - Towards a next generation of stem cell markers. Stem Cells and Development, 22(23), 3100–3113.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Nicolardi, S., van der Burgt, Y. E., Dragan, I., Hensbergen, P. J., & Deelder, A. M. (2013). Identification of new apolipoprotein-CIII glycoforms with ultrahigh resolution MALDI-FTICR mass spectrometry of human sera. Journal of Proteome Research, 12(5), 2260–2268.PubMedGoogle Scholar
  45. 45.
    Shuo, T., Koshikawa, N., Hoshino, D., Minegishi, T., Ao-Kondo, H., Oyama, M., et al. (2012). Detection of the heterogeneous O-glycosylation profile of MT1-MMP expressed in cancer cells by a simple MALDI-MS method. PLoS One, 7(8), e43751.PubMedPubMedCentralGoogle Scholar
  46. 46.
    D’Alessandro, A., Mirasole, C., & Zolla, L. (2013). Haemoglobin glycation (Hb1Ac) increases during red blood cell storage: A MALDI-TOF mass-spectrometry-based investigation. Vox Sanguinis, 105(2), 177–180.PubMedGoogle Scholar
  47. 47.
    Lee, B. S., Jayathilaka, G. D., Huang, J. S., Vida, L. N., Honig, G. R., & Gupta, S. (2011). Analyses of in vitro nonenzymatic glycation of normal and variant hemoglobins by MALDI-TOF mass spectrometry. Journal of Biomolecular Techniques, 22(3), 90–94.PubMedGoogle Scholar
  48. 48.
    Hou, J., Xie, Z., Xue, P., Cui, Z., Chen, X., Li, J., et al. (2010). Enhanced MALDI-TOF MS analysis of phosphopeptides using an optimized DHAP/DAHC matrix. Journal of Biomedicine & Biotechnology, 2010, 759690.Google Scholar
  49. 49.
    Yang, X., Wu, H., Kobayashi, T., Solaro, R. J., & van Breemen, R. B. (2004). Enhanced ionization of phosphorylated peptides during MALDI TOF mass spectrometry. Analytical Chemistry, 76(5), 1532–1536.PubMedGoogle Scholar
  50. 50.
    Kjellström, S., & Jensen, O. N. (2004). Phosphoric acid as a matrix additive for MALDI MS analysis of phosphopeptides and phosphoproteins. Analytical Chemistry, 76(17), 5109–5117.PubMedGoogle Scholar
  51. 51.
    Zhou, L. H., Kang, G. Y., & Kim, K. P. (2009). A binary matrix for improved detection of phosphopeptides in matrix-assisted laser desorption/ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 23(15), 2264–2272.PubMedGoogle Scholar
  52. 52.
    Wang, H., Duan, J., & Cheng, Q. (2011). Photocatalytically patterned TiO2 arrays for on-plate selective enrichment of phosphopeptides and direct MALDI MS analysis. Analytical Chemistry, 83(5), 1624–1631.PubMedGoogle Scholar
  53. 53.
    Eriksson, A., Bergquist, J., Edwards, K., Hagfeldt, A., Malmström, D., & Hernández, V. A. (2011). Mesoporous TiO2-based experimental layout for on-target enrichment and separation of multi- and monophosphorylated peptides prior to analysis with matrix-assisted laser desorption-ionization mass spectrometry. Analytical Chemistry, 83(3), 761–766.PubMedGoogle Scholar
  54. 54.
    Qiao, L., Roussel, C., Wan, J., Yang, P., Girault, H. H., & Liu, B. (2007). Specific on-plate enrichment of phosphorylated peptides for direct MALDI-TOF MS analysis. Journal of Proteome Research, 6(12), 4763–4769.PubMedGoogle Scholar
  55. 55.
    Chen, C. D., Yu, Z. Q., Chen, X. L., Zhou, J. Q., Zhou, X. T., Sun, X. H., et al. (2013). Evaluating the association between pathological myopia and SNPs in RASGRF1. ACTC1 and GJD2 genes at chromosome 15q14 and 15q25 in a Chinese population. Ophthalmic Genetics, 36(1), 1–7.PubMedGoogle Scholar
  56. 56.
    Chen, W. H., Hsu, I. H., Sun, Y. C., Wang, Y. K., & Wu, T. K. (2013). Immunocapture couples with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for rapid detection of type 1 dengue virus. Journal of Chromatography A, 1288, 21–27.PubMedGoogle Scholar
  57. 57.
    Albertini, V., Benussi, L., Paterlini, A., Glionna, M., Prestia, A., Bocchio-Chiavetto, L., et al. (2012). Distinct cerebrospinal fluid amyloid-beta peptide signatures in cognitive decline associated with Alzheimer’s disease and schizophrenia. Electrophoresis, 33(24), 3738–3744.PubMedGoogle Scholar
  58. 58.
    Kirchner, H., Gutierrez, J. A., Solenberg, P. J., Pfluger, P. T., Czyzyk, T. A., Willency, J. A., et al. (2009). GOAT links dietary lipids with the endocrine control of energy balance. Nature Medicine, 15(7), 741–745.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Kang, J. H., Mori, T., Kitazaki, H., Niidome, T., Takayama, K., Nakanishi, Y., et al. (2013). Serum protein kinase Cα as a diagnostic biomarker of cancers. Cancer Biomarkers, 13(2), 99–103.PubMedGoogle Scholar
  60. 60.
    Jiang, W., Murashko, E. A., Dubrovskii, Y. A., Podolskaya, E. P., Babakov, V. N., Mikler, J., et al. (2013). Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of titanium oxide-enriched peptides for detection of aged organophosphorus adducts on human butyrylcholinesterase. Analytical Biochemistry, 439(2), 132–141.PubMedGoogle Scholar
  61. 61.
    Demarco, M. L., & Ford, B. A. (2013). Beyond identification: Emerging and future uses for MALDI-TOF mass spectrometry in the clinical microbiology laboratory. Clinics in Laboratory Medicine, 33(3), 611–628.PubMedGoogle Scholar
  62. 62.
    Nagy, E., Urbán, E., Becker, S., Kostrzewa, M., Vörös, A., Hunyadkürti, J., et al. (2013). MALDI-TOF MS fingerprinting facilitates rapid discrimination of phylotypes I, II and III of Propionibacterium acnes. Anaerobe, 20, 20–26.PubMedGoogle Scholar
  63. 63.
    Goldstein, J. E., Zhang, L., Borror, C. M., Rago, J. V., & Sandrin, T. R. (2013). Culture conditions and sample preparation methods affect spectrum quality and reproducibility during profiling of Staphylococcus aureus with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Letters in Applied Microbiology, 57(2), 144–150.PubMedGoogle Scholar
  64. 64.
    Suarez, S., Ferroni, A., Lotz, A., Jolley, K. A., Guérin, P., Leto, J., et al. (2013). Ribosomal proteins as biomarkers for bacterial identification by mass spectrometry in the clinical microbiology laboratory. Journal of Microbiological Methods, 94(3), 390–396.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Josten, M., Reif, M., Szekat, C., Al-Sabti, N., Roemer, T., Sparbier, K., et al. (2013). Analysis of the matrix-assisted laser desorption ionization-time of flight mass spectrum of Staphylococcus aureus identifies mutations that allow differentiation of the main clonal lineages. Journal of Clinical Microbiology, 51(6), 1809–1817.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Schaumann, R., Knoop, N., Genzel, G. H., Losensky, K., Rosenkranz, C., Stîngu, C. S., et al. (2013). Discrimination of Enterobacteriaceae and non-fermenting gram negative bacilli by MALDI-TOF mass spectrometry. The Open Microbiology Journal, 7, 118–122.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Gray, T. J., Thomas, L., Olma, T., Iredell, J. R., & Chen, S. C. (2013). Rapid identification of Gram-negative organisms from blood culture bottles using a modified extraction method and MALDI-TOF mass spectrometry. Diagnostic Microbiology and Infectious Disease, 77(2), 110–112.PubMedGoogle Scholar
  68. 68.
    Leli, C., Cenci, E., Cardaccia, A., Moretti, A., D’Alò, F., Pagliochini, R., et al. (2013). Rapid identification of bacterial and fungal pathogens from positive blood cultures by MALDI-TOF MS. International Journal of Medical Microbiology, 303(4), 205–209.PubMedGoogle Scholar
  69. 69.
    Martiny, D., Debaugnies, F., Gateff, D., Gérard, M., Aoun, M., Martin, C., et al. (2013). Impact of rapid microbial identification directly from positive blood cultures using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry on patient management. Clinical Microbiology and Infection, 19(12), E568–E581.PubMedGoogle Scholar
  70. 70.
    Schneiderhan, W., Grundt, A., Wörner, S., Findeisen, P., & Neumaier, M. (2013). Workflow analysis of around-the-clock processing of blood culture samples and integrated MALDI-TOF mass spectrometry analysis for the diagnosis of bloodstream infections. Clinical Chemistry, 59(11), 1649–1656.PubMedGoogle Scholar
  71. 71.
    Schulthess, B., Brodner, K., Bloemberg, G. V., Zbinden, R., Böttger, E. C., & Hombach, M. (2013). Identification of Gram-positive cocci by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry: Comparison of different preparation methods and implementation of a practical algorithm for routine diagnostics. Journal of Clinical Microbiology, 51(6), 1834–1840.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Seng, P., Abat, C., Rolain, J. M., Colson, P., Lagier, J. C., Gouriet, F., et al. (2013). Identification of rare pathogenic bacteria in a clinical microbiology laboratory: Impact of matrix-assisted laser desorption ionization-time of flight mass spectrometry. Journal of Clinical Microbiology, 51(7), 2182–2194.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Dybwad, M., van der Laaken, A. L., Blatny, J. M., & Paauw, A. (2013). Rapid identification of Bacillus anthracis spores in suspicious powder samples by using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Applied and Environmental Microbiology, 79(17), 5372–5383.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Ford, B. A., & Burnham, C. A. (2013). Optimization of routine identification of clinically relevant Gram-negative bacteria by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry and the Bruker Biotyper. Journal of Clinical Microbiology, 51(5), 1412–1420.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Jamal, W., Saleem, R., & Rotimi, V. O. (2013). Rapid identification of pathogens directly from blood culture bottles by Bruker matrix-assisted laser desorption laser ionization-time of flight mass spectrometry versus routine methods. Diagnostic Microbiology and Infectious Disease, 76(4), 404–408.PubMedGoogle Scholar
  76. 76.
    Karger, A., Melzer, F., Timke, M., Bettin, B., Kostrzewa, M., Nöckler, K., et al. (2013). Inter-laboratory comparison of intact cell matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) in the identification and differentiation of Brucella spp. Journal of Clinical Microbiology, 51(9), 3123–3126.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Lee, T. F., Lee, H., Chen, C. M., Du, S. H., Cheng, Y. C., Hsu, C. C., et al. (2013). Comparison of the accuracy of matrix-assisted laser desorption ionization-time of flight mass spectrometry with that of other commercial identification systems for identifying Staphylococcus saprophyticus in urine. Journal of Clinical Microbiology, 51(5), 1563–1566.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Mancini, N., De Carolis, E., Infurnari, L., Vella, A., Clementi, N., Vaccaro, L., et al. (2013). Comparative evaluation of the Bruker Biotyper and Vitek MS matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry systems for identification of yeasts of medical importance. Journal of Clinical Microbiology, 51(7), 2453–2457.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Rychert, J., Burnham, C. A., Bythrow, M., Garner, O. B., Ginocchio, C. C., Jennemann, R., et al. (2013). Multicenter evaluation of the Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry system for identification of Gram-positive aerobic bacteria. Journal of Clinical Microbiology, 51(7), 2225–2231.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Wojewoda, C., & Education Committee of the Academy of Clinical Laboratory Physicians and Scientists. (2013). Pathology consultation on matrix-assisted laser desorption ionization-time of flight mass spectrometry for microbiology. American Journal of Clinical Pathology, 140(2), 143–148.PubMedGoogle Scholar
  81. 81.
    Lacroix, C., Gicquel, A., Sendid, B., Meyer, J., Accoceberry, I., François, N., et al. (2014). Evaluation of two matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) systems for the identification of Candida species. Clinical Microbiology and Infection, 20(2), 153–158.PubMedGoogle Scholar
  82. 82.
    Vella, A., De Carolis, E., Vaccaro, L., Posteraro, P., Perlin, D. S., Kostrzewa, M., et al. (2013). Rapid antifungal susceptibility testing by matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis. Journal of Clinical Microbiology, 51(9), 2964–2969.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Hoppenheit, A., Murugaiyan, J., Bauer, B., Steuber, S., Clausen, P. H., & Roesler, U. (2013). Identification of Tsetse (Glossina spp.) using matrix-assisted laser desorption/ionisation time of flight mass spectrometry. PLoS Neglected Tropical Diseases, 7(7), e2305.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Müller, P., Pflüger, V., Wittwer, M., Ziegler, D., Chandre, F., Simard, F., et al. (2013). Identification of cryptic Anopheles mosquito species by molecular protein profiling. PLoS One, 8(2), e57486.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Martin-Eauclaire, M. F., Granjeaud, S., Belghazi, M., & Bougis, P. E. (2013). Achieving automated scorpion venom mass fingerprinting (VMF) in the nanogram range. Toxicon, 69, 211–218.PubMedGoogle Scholar
  86. 86.
    Pimenta, A. M., Stöcklin, R., Favreau, P., Bougis, P. E., & Martin-Eauclaire, M. F. (2001). Moving pieces in a proteomic puzzle: Mass fingerprinting of toxic fractions from the venom of Tityus serrulatus (Scorpiones, Buthidae). Rapid Communications in Mass Spectrometry, 15(17), 1562–1572.PubMedGoogle Scholar
  87. 87.
    Clifford, A. J., Rincon, G., Owens, J. E., Medrano, J. F., Moshfegh, A. J., Baer, D. J., et al. (2013). Single nucleotide polymorphisms in CETP, SLC46A1, SLC19A1, CD36, BCMO1, APOA5, and ABCA1 are significant predictors of plasma HDL in healthy adults. Lipids in Health and Disease, 12, 66.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Justenhoven, C., Pentimalli, D., Rabstein, S., Harth, V., Lotz, A., Pesch, B., et al. (2013). CYP2B6∗6 is associated with increased breast cancer risk. International Journal of Cancer, 134(2), 426–430.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Peng, L., Guo, J., Zhang, Z., Liu, L., Cao, Y., Shi, H., et al. (2013). A candidate gene study for the association of host single nucleotide polymorphisms with liver cirrhosis risk in Chinese hepatitis B patients. Genetic Testing and Molecular Biomarkers, 17(9), 681–686.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Shen, L., Liu, R., Zhang, H., Huang, Y., Sun, R., & Tang, P. (2013). Replication study of STAT4 rs7574865 G/T polymorphism and risk of rheumatoid arthritis in a Chinese population. Gene, 526(2), 259–264.PubMedGoogle Scholar
  91. 91.
    Yang, J., & Caprioli, R. M. (2013). Matrix precoated targets for direct lipid analysis and imaging of tissue. Analytical Chemistry, 85(5), 2907–2912.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Zhang, D. M., Cheng, L. Q., Zhai, Z. F., Feng, L., Zhong, B. Y., You, Y., et al. (2013). Single-nucleotide polymorphism and haplotypes of TNIP1 associated with systemic lupus erythematosus in a Chinese Han population. The Journal of Rheumatology, 40(9), 1535–1544.PubMedGoogle Scholar
  93. 93.
    Bexfield, A., Bond, A. E., Morgan, C., Wagstaff, J., Newton, R. P., Ratcliffe, N. A., et al. (2010). Amino acid derivatives from Lucilia sericata excretions/secretions may contribute to the beneficial effects of maggot therapy via increased angiogenesis. The British Journal of Dermatology, 162(3), 554–562.PubMedGoogle Scholar
  94. 94.
    Kim, I. C., Lee, J. H., Bang, G., Choi, S. H., Kim, Y. H., Kim, K. P., et al. (2013). Lipid profiles for HER2-positive breast cancer. Anticancer Research, 33(6), 2467–2472.PubMedGoogle Scholar
  95. 95.
    Ostermann, K. M., Dieplinger, R., Lutsch, N. M., Strupat, K., Metz, T. F., Mechtler, T. P., et al. (2013). Matrix-assisted laser desorption/ionization for simultaneous quantitation of (acyl-)carnitines and organic acids in dried blood spots. Rapid Communications in Mass Spectrometry, 27(13), 1497–1504.PubMedGoogle Scholar
  96. 96.
    Estrada, R., Puppato, A., Borchman, D., & Yappert, M. C. (2010). Reevaluation of the phospholipid composition in membranes of adult human lenses by (31)P NMR and MALDI MS. Biochimica et Biophysica Acta, 1798(3), 303–311.PubMedGoogle Scholar
  97. 97.
    Pyttel, S., Zschörnig, K., Nimptsch, A., Paasch, U., & Schiller, J. (2012). Enhanced lysophosphatidylcholine and sphingomyelin contents are characteristic of spermatozoa from obese men-A MALDI mass spectrometric study. Chemistry and Physics of Lipids, 165(8), 861–865.PubMedGoogle Scholar
  98. 98.
    Wei, Y., Li, S., Wang, J., Shu, C., Liu, J., Xiong, S., et al. (2013). Polystyrene spheres-assisted matrix-assisted laser desorption ionization mass spectrometry for quantitative analysis of plasma lysophosphatidylcholines. Analytical Chemistry, 85(9), 4729–4734.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Swansea University Medical SchoolSwansea UniversitySwanseaUK

Personalised recommendations