Selective Derivatization of Hexahistidine-Tagged Recombinant Proteins

  • Vasantha Krishna Kadambar
  • Artem MelmanEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1140)


Covalent modification of proteins is extensively used in research and industry for biosensing, medical diagnostics, targeted drug delivery, and many other practical applications. The conventional method for production of protein conjugates has changed little in the last 20 years mostly relying on reactions of side chains of cysteine and lysine residues. Due to the presence of large numbers of similar reactive amino acid residues in proteins, common synthetic methods generally produce complex mixtures of products, which are difficult to separate. An emerging alternative technology for covalent modification of proteins involves formation of a covalent bond with a hexahistidine affinity tag present in a majority of recombinant proteins without interfering with other amino acid residues. The approach is based on formation of a ternary complex of the hexahistidine sequence with a bivalent metal cation chelated by ligand bearing an electrophilic Baylis-Hillman ester group capable of subsequent formation of a covalent bond with one of the histidine residues of the tag. The reaction proceeds under mild reaction conditions in neutral aqueous solutions under high dilutions (10−5 to 10−4 M) providing a stable covalent bond between the label and an imidazole residue in a hexahistidine tag at either C- or N-terminus. Because hexahistidine affinity tag methodology is a de-facto standard for preparation of recombinant proteins our approach can be easily implemented for selective derivatization of these proteins with fluorescent groups, alkynyl groups for “click” reactions, or biotinylation.


Bioconjugation Proteins Histidine Affinity tag Coordination Metal cations 


  1. 1.
    Vos, W. L., Koehorst, R. B. M., Spruijt, R. B., & Hemminga, M. A. (2005). Membrane-bound conformation of M13 major coat protein - A structure validation through fret-derived constraints. Journal of Biological Chemistry, 280(46), 38522–38527.PubMedGoogle Scholar
  2. 2.
    Roy, R., Hohng, S., & Ha, T. (2008). A practical guide to single-molecule FRET. Nature Methods, 5(6), 507–516.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Miller, L. W., & Cornish, V. W. (2005). Selective chemical labeling of proteins in living cells. Current Opinion in Chemical Biology, 9(1), 56–61.PubMedGoogle Scholar
  4. 4.
    Hermanson, G. T. (2008). Bioconjugate techniques (2nd ed.p. xxx). Amsterdam; Boston, MA: Elsevier Academic Press, 1202 p.Google Scholar
  5. 5.
    Kelman, Z., Naktinis, V., & Odonnell, M. (1995). Radiolabeling of proteins for biochemical studies, in DNA replication (pp. 430–442). San Diego, CA: Academic Press Inc.Google Scholar
  6. 6.
    Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, 40(6), 1451–1463.Google Scholar
  7. 7.
    Park, J. W., Hong, K. L., Kirpotin, D. B., Colbern, G., Shalaby, R., Baselga, J., et al. (2002). Anti-HER2 immunoliposomes: Enhanced efficacy attributable to targeted delivery. Clinical Cancer Research, 8(4), 1172–1181.PubMedGoogle Scholar
  8. 8.
    Safavy, A., Raisch, K. P., Khazaeli, M. B., Buchsbaum, D. J., & Bonner, J. A. (1999). Paclitaxel derivatives for targeted therapy of cancer: Toward the development of smart taxanes. Journal of Medicinal Chemistry, 42(23), 4919–4924.PubMedGoogle Scholar
  9. 9.
    Caliceti, P., & Veronese, F. M. (2003). Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates. Advanced Drug Delivery Reviews, 55(10), 1261–1277.PubMedGoogle Scholar
  10. 10.
    Cosnier, S. (1999). Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review. Biosensors & Bioelectronics, 14(5), 443–456.Google Scholar
  11. 11.
    Sletten, E. M., & Bertozzi, C. R. (2009). Bioorthogonal chemistry: Fishing for selectivity in a sea of functionality. Angewandte Chemie-International Edition, 48(38), 6974–6998.PubMedGoogle Scholar
  12. 12.
    Bragg, P. D., & Hou, C. (1975). Subunit composition, function, and spatial arrangement in the Ca2+−and Mg2+−activated adenosine triphosphatases of Escherichia coli and Salmonella typhimurium. Archives of Biochemistry and Biophysics, 167(1), 311–321.PubMedGoogle Scholar
  13. 13.
    Rifai, A., & Wong, S. S. (1986). Preparation of phosphorylcholine-conjugated antigens. Journal of Immunological Methods, 94(1–2), 25–30.PubMedGoogle Scholar
  14. 14.
    Peng, L., Calton, G. J., & Burnett, J. W. (1987). Effect of borohydride reduction on antibodies. Applied Biochemistry and Biotechnology, 14(2), 91–99.PubMedGoogle Scholar
  15. 15.
    McFarland, J. M., & Francis, M. B. (2005). Reductive alkylation of proteins using iridium catalyzed transfer hydrogenation. Journal of the American Chemical Society, 127(39), 13490–13491.PubMedGoogle Scholar
  16. 16.
    King, T. P., Li, Y., & Kochoumian, L. (1978). Preparation of protein conjugates via intermolecular disulfide bond formation. Biochemistry, 17(8), 1499–1506.PubMedGoogle Scholar
  17. 17.
    Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82(1), 70–77.PubMedGoogle Scholar
  18. 18.
    Macmillan, D., Bill, R. M., Sage, K. A., Fern, D., & Flitsch, S. L. (2001). Selective in vitro glycosylation of recombinant proteins: Semi-synthesis of novel homogeneous glycoforms of human erythropoietin. Chemistry & Biology, 8(2), 133–145.Google Scholar
  19. 19.
    Gorin, G., & Doughty, G. (1968). Equilibrium constants for the reaction of glutathione with cystine and their relative oxidation-reduction potentials. Archives of Biochemistry and Biophysics, 126(2), 547–551.PubMedGoogle Scholar
  20. 20.
    Dirksen, A., Langereis, S., de Waal, B. F. M., van Genderen, M. H. P., Meijer, E. W., de Lussanet, Q. G., et al. (2004). Design and synthesis of a bimodal target-specific contrast agent for angiogenesis. Organic Letters, 6(26), 4857–4860.PubMedGoogle Scholar
  21. 21.
    McMahan, S. A., & Burgess, R. R. (1994). Use of aryl azide cross-linkers to investigate protein-protein interactions - an optimization of important conditions as applied to escherichia-coli rna-polymerase and localization of a sigma(70)-alpha cross-link to the c-terminal region of alpha. Biochemistry, 33(40), 12092–12099.PubMedGoogle Scholar
  22. 22.
    Joshi, N. S., Whitaker, L. R., & Francis, M. B. (2004). A three-component Mannich-type reaction for selective tyrosine bioconjugation. Journal of the American Chemical Society, 126(49), 15942–15943.PubMedGoogle Scholar
  23. 23.
    Kodadek, T., Duroux-Richard, I., & Bonnafous, J. C. (2005). Techniques: Oxidative cross-linking as an emergent tool for the analysis of receptor-mediated signalling events. Trends in Pharmacological Sciences, 26(4), 210–217.PubMedGoogle Scholar
  24. 24.
    Antos, J. M., & Francis, M. B. (2006). Transition metal catalyzed methods for site-selective protein modification. Current Opinion in Chemical Biology, 10(3), 253–262.PubMedGoogle Scholar
  25. 25.
    Matos, M. J., Oliveira, B. L., MartÃ, N., Martinez Saez, N., Guerreiro, A., Cal, P. M. S. D., et al. (2018). Chemo- and Regioselective lysine modification on native proteins. Journal of the American Chemical Society, 140(11), 4004–4017.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Della-Penna, D., Christoffersen, R. E., & Bennett, A. B. (1986). Biotinylated proteins as molecular weight standards on Western blots. Analytical Biochemistry, 152(2), 329–332.PubMedGoogle Scholar
  27. 27.
    Green, N. M., Konieczny, L., Toms, E. J., & Valentine, R. C. (1971). The use of bifunctional biotinyl compounds to determine the arrangement of subunits in avidin. The Biochemical Journal, 125(3), 781–791.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Wilchek, M., Bayer, E. A., & Livnah, O. (2006). Essentials of biorecognition: The (strept)avidin-biotin system as a model for protein-protein and protein-ligand interaction. Immunology Letters, 103(1), 27–32.PubMedGoogle Scholar
  29. 29.
    Debets, M. F., van der Doelen, C. W. J., Rutjes, F., & van Delft, F. L. (2010). Azide: A unique dipole for metal-free bioorthogonal ligations. ChemBioChem, 11(9), 1168–1184.PubMedGoogle Scholar
  30. 30.
    Jewett, J. C., & Bertozzi, C. R. (2010). Cu-free click cycloaddition reactions in chemical biology. Chemical Society Reviews., 39(4), 1272–1279.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Mamidyala, S. K., & Finn, M. G. (2010). In situ click chemistry: Probing the binding landscapes of biological molecules. Chemical Society Reviews., 39(4), 1252–1261.PubMedGoogle Scholar
  32. 32.
    Kolb, H. C., Finn, M. G., & Sharpless, K. B. (2001). Click chemistry: Diverse chemical function from a few good reactions. Angewandte Chemie, International Edition, 40(11), 2004.Google Scholar
  33. 33.
    Rossin, R., Verkerk, P. R., van den Bosch, S. M., Vulders, R. C. M., Verel, I., Lub, J., et al. (2010). In vivo chemistry for pretargeted tumor imaging in live mice. Angewandte Chemie, International Edition, 49(19), 3375–3378.Google Scholar
  34. 34.
    Laughlin, S. T., Baskin, J. M., Amacher, S. L., & Bertozzi, C. R. (2008). In vivo imaging of membrane-associated glycans in developing zebrafish. Science, 320(5876), 664–667.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Rostovtsev, V. V., Green, L. G., Fokin, V. V., & Sharpless, K. B. (2002). A stepwise Huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angewandte Chemie, International Edition, 41(14), 2596.Google Scholar
  36. 36.
    Hein, J. E., & Fokin, V. V. (2010). Copper-catalyzed azide-alkyne cycloaddition (CuAAC) and beyond: New reactivity of copper (I) acetylides. Chemical Society Reviews, 39(4), 1302–1315.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Becer, C. R., Hoogenboom, R., & Schubert, U. S. (2009). Click chemistry beyond metal-catalyzed cycloaddition. Angewandte Chemie, International Edition, 48(27), 4900–4908.Google Scholar
  38. 38.
    Devaraj, N. K., & Weissleder, R. (2011). Biomedical applications of Tetrazine cycloadditions. Accounts of Chemical Research, 44(9), 816–827.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Knall, A. C., & Slugovc, C. (2013). Inverse electron demand Diels-Alder (iEDDA)-initiated conjugation: A (high) potential click chemistry scheme. Chemical Society Reviews, 42(12), 5131–5142.PubMedGoogle Scholar
  40. 40.
    Devaraj, N. K., Weissleder, R., & Hilderbrand, S. A. (2008). Tetrazine-based cycloadditions: Application to pretargeted live cell imaging. Bioconjugate Chemistry, 19(12), 2297–2299.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Tian, F., Lu, Y., Manibusan, A., Sellers, A., Tran, H., Sun, Y., et al. (2014). A general approach to site-specific antibody drug conjugates. Proceedings of the National Academy of Sciences, 111(5), 1766–1771.Google Scholar
  42. 42.
    Dilek, O., Lei, Z., Mukherjee, K., & Bane, S. (2015). Rapid formation of a stable boron-nitrogen heterocycle in dilute, neutral aqueous solution for bioorthogonal coupling reactions. Chemical Communications, 51(95), 16992–16995.PubMedGoogle Scholar
  43. 43.
    Doronina, S. O., Toki, B. E., Torgov, M. Y., Mendelsohn, B. A., Cerveny, C. G., Chace, D. F., et al. (2003). Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nature Biotechnology, 21(7), 778.PubMedGoogle Scholar
  44. 44.
    Wu, A. M., & Senter, P. D. (2005). Arming antibodies: Prospects and challenges for immunoconjugates. Nature Biotechnology, 23(9), 1137.PubMedGoogle Scholar
  45. 45.
    Akgun, B., Li, C., Hao, Y., Lambkin, G., Derda, R., & Hall, D. G. (2017). Synergic “click” boronate/thiosemicarbazone system for fast and irreversible bioorthogonal conjugation in live cells. Journal of the American Chemical Society, 139(40), 14285–14291.PubMedGoogle Scholar
  46. 46.
    Ulrich, S. B., Boturyn, D., Marra, A., Renaudet, O., & Dumy, P. (2014). Oxime ligation: A chemoselective click-type reaction for accessing multifunctional biomolecular constructs. Chemistry - A European Journal, 20(1), 34–41.Google Scholar
  47. 47.
    Mueller, B. M., Wrasidlo, W. A., & Reisfeld, R. A. (1990). Antibody conjugates with morpholinodoxorubicin and acid cleavable linkers. Bioconjugate Chemistry, 1(5), 325–330.PubMedGoogle Scholar
  48. 48.
    Sanderson, R. J., Hering, M. A., James, S. F., Sun, M. M. C., Doronina, S. O., Siadak, A. W., et al. (2005). In vivo drug-linker stability of an anti-CD30 dipeptide-linked auristatin immunoconjugate. Clinical Cancer Research, 11(2), 843–852.Google Scholar
  49. 49.
    Gaertner, H. F., Rose, K., Cotton, R., Timms, D., Camble, R., & Offord, R. E. (1992). Construction of protein analogs by site-specific condensation of unprotected fragments. Bioconjugate Chemistry, 3(3), 262–268.PubMedGoogle Scholar
  50. 50.
    Liu, C. F., & Tam, J. P. (1994). Peptide segment ligation strategy without use of protecting groups. Proceedings of the National Academy of Sciences of the United States of America, 91(14), 6584–6588.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Bi, X., Hartono, D., & Yang, K.-L. (2008). Controlling orientations of immobilized oligopeptides using N-terminal cysteine labels. Langmuir, 24(10), 5238–5240.PubMedGoogle Scholar
  52. 52.
    Gilmore, J. M., Scheck, R. A., Esser-Kahn, A. P., Joshi, N. S., & Francis, M. B. (2006). N-terminal protein modification through a biomimetic transamination reaction. Angewandte Chemie, International Edition, 45(32), 5307–5311.Google Scholar
  53. 53.
    Nguyen, T., Joshi, N. S., & Francis, M. B. (2006). An affinity-based method for the purification of fluorescently-labeled biomolecules. Bioconjugate Chemistry, 17(4), 869–872.PubMedGoogle Scholar
  54. 54.
    Xie, J. M., & Schultz, P. G. (2006). Innovation: A chemical toolkit for proteins - an expanded genetic code. Nature Reviews Molecular Cell Biology, 7(10), 775–782.PubMedGoogle Scholar
  55. 55.
    Chin, J. W., Cropp, T. A., Anderson, J. C., Mukherji, M., Zhang, Z. W., & Schultz, P. G. (2003). An expanded eukaryotic genetic code. Science, 301(5635), 964–967.PubMedGoogle Scholar
  56. 56.
    Allen, J. J., Lazerwith, S. E., & Shokat, K. M. (2005). Bio-orthogonal affinity purification of direct kinase substrates. Journal of the American Chemical Society, 127(15), 5288–5289.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Dube, D. H., Prescher, J. A., Quang, C. N., & Bertozzi, C. R. (2006). Probing mucin-type O-linked glycosylation in living animals. Proceedings of the National Academy of Sciences of the United States of America, 103(13), 4819–4824.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Vocadlo, D. J., Hang, H. C., Kim, E. J., Hanover, J. A., & Bertozzi, C. R. (2003). A chemical approach for identifying O-GlcNAc-modified proteins in cells. Proceedings of the National Academy of Sciences of the United States of America, 100(16), 9116–9121.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Rabuka, D., Hubbard, S. C., Laughlin, S. T., Argade, S. P., & Bertozzi, C. R. (2006). A chemical reporter strategy to probe glycoprotein fucosylation. Journal of the American Chemical Society, 128(37), 12078–12079.PubMedPubMedCentralGoogle Scholar
  60. 60.
    La Clair, J. J., Foley, T. L., Schegg, T. R., Regan, C. M., & Burkart, M. D. (2004). Manipulation of carrier proteins in antibiotic biosynthesis. Chemistry & Biology, 11(2), 195–201.Google Scholar
  61. 61.
    Yin, J., Liu, F., Li, X. H., & Walsh, C. T. (2004). Labeling proteins with small molecules by site-specific posttranslational modification. Journal of the American Chemical Society, 126(25), 7754–7755.PubMedGoogle Scholar
  62. 62.
    Arnau, J., Lauritzen, C., Petersen, G. E., & Pedersen, J. (2006). Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. Protein Expression and Purification, 48(1), 1–13.PubMedGoogle Scholar
  63. 63.
    Gaberc-Porekar, V., & Menart, V. (2005). Potential for using histidine tags in purification of proteins at large scale. Chemical Engineering & Technology, 28(11), 1306–1314.Google Scholar
  64. 64.
    Hochuli, E., Bannwarth, W., Dobeli, H., Gentz, R., & Stuber, D. (1988). Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate adsorbent. Nature Biotechnology, 6(11), 1321–1325.Google Scholar
  65. 65.
    Lata, S., Reichel, A., Brock, R., Tampe, R., & Piehler, J. (2005). High-affinity adaptors for switchable recognition of histidine-tagged proteins. Journal of the American Chemical Society, 127(29), 10205–10215.PubMedGoogle Scholar
  66. 66.
    Goldsmith, C. R., Jaworski, J., Sheng, M., & Lippard, S. J. (2006). Selective labeling of extracellular proteins containing polyhistidine sequences by a fluorescein - Nitrilotriacetic acid conjugate. Journal of the American Chemical Society, 128(2), 418–419.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Baltus, R. E., Carmon, K. S., & Luck, L. A. (2007). Quartz crystal microbalance (QCM) with immobilized protein receptors: Comparison of response to ligand binding for direct protein immobilization and protein attachment via disulfide linker. Langmuir, 23(7), 3880–3885.PubMedGoogle Scholar
  68. 68.
    Paborsky, L. R., Dunn, K. E., Gibbs, C. S., & Dougherty, J. P. (1996). A nickel chelate microtiter plate assay for six histidine-containing proteins. Analytical Biochemistry, 234(1), 60–65.PubMedGoogle Scholar
  69. 69.
    Li, Y. J., Wang, H. Y., & Xie, W. H. (2009). Nitrilotriacetic acid (NTA) resin as a reversible immobilization matrix for Polyhistidine tagged enzyme in enzyme thermistor. Sensor Letters, 7(6), 1072–1076.Google Scholar
  70. 70.
    Bresolin, I. T. L., Borsoi-Ribeiro, M., Tamashiro, W., Augusto, E. F. P., Vijayalakshmi, M. A., & Bueno, S. M. A. (2010). Evaluation of immobilized metal-ion affinity chromatography (IMAC) as a technique for IgG(1) monoclonal antibodies purification: The effect of chelating ligand and support. Applied Biochemistry and Biotechnology, 160(7), 2148–2165.PubMedGoogle Scholar
  71. 71.
    Conti, M., Falini, G., & Samori, B. (2000). How strong is the coordination bond between a histidine tag and Ni-nitrilotriacetate? An experiment of mechanochemistry on single molecules. Angewandte Chemie, International Edition, 39(1), 215.Google Scholar
  72. 72.
    Hutschenreiter, S., Neumann, L., Radler, U., Schmitt, L., & Tampe, R. (2003). Metal-chelating amino acids as building blocks for synthetic receptors sensing metal ions and histidine-tagged proteins. ChemBioChem, 4(12), 1340–1344.PubMedGoogle Scholar
  73. 73.
    Tareste, D., Pincet, F. R., Brellier, M., Mioskowski, C., & Perez, E. (2005). The binding energy of two nitrilotriacetate groups sharing a nickel ion. Journal of the American Chemical Society, 127(11), 3879–3884.PubMedGoogle Scholar
  74. 74.
    Mehlenbacher, M. R., Bou-Abdallah, F., Liu, X. X., & Melman, A. (2015). Calorimetric studies of ternary complexes of Ni(II) and Cu(II) nitrilotriacetic acid and N-acetyloligohistidines. Inorganica Chimica Acta, 437, 152–158.Google Scholar
  75. 75.
    Knecht, S., Ricklin, D., Eberle, A. N., & Ernst, B. (2009). Oligohis-tags: Mechanisms of binding to Ni2+-NTA surfaces. Journal of Molecular Recognition, 22(4), 270–279.PubMedGoogle Scholar
  76. 76.
    Guignet, E. G., Hovius, R., & Vogel, H. (2004). Reversible site-selective labeling of membrane proteins in live cells. Nature Biotechnology, 22(4), 440–444.PubMedGoogle Scholar
  77. 77.
    Kapanidis, A. N., Ebright, Y. W., & Ebright, R. H. (2001). Site-specific incorporation of fluorescent probes into protein: Hexahistidine-tag-mediated fluorescent labeling with (Ni2+: Nitrilotriacetic acid)(n)-fluorochrome conjugates. Journal of the American Chemical Society, 123(48), 12123–12125.PubMedGoogle Scholar
  78. 78.
    Dorn, I. T., Neumaier, K. R., & Tampe, R. (1998). Molecular recognition of histidine-tagged molecules by metal-chelating lipids monitored by fluorescence energy transfer and correlation spectroscopy. Journal of the American Chemical Society, 120(12), 2753–2763.Google Scholar
  79. 79.
    Bachi, M. D., & Melman, A. (1996). Temporary sulfur connection in an intramolecular S(N)2 reaction. A stereocontrolled synthesis of (+/−)-kainic acid. Synlett, 1996(1), 60.Google Scholar
  80. 80.
    Bachi, M. D., Bilokin, Y. V., & Melman, A. (1998). Stereospecific intramolecular Michael addition to (−)-carvone based on temporary sulfur connection. Tetrahedron Letters, 39(19), 3035–3038.Google Scholar
  81. 81.
    Stork, G., & Chan, T. Y. (1995). Temporary magnesium and aluminum connections in [4 + 2] cycloadditions. Journal of the American Chemical Society, 117(24), 6595–6596.Google Scholar
  82. 82.
    Ward, D. E., & Abaee, M. S. (2000). Intramolecular Diels-Alder reaction by self-assembly of the components on a Lewis acid template. Organic Letters, 2(24), 3937–3940.PubMedGoogle Scholar
  83. 83.
    Bertozzi, F., Olsson, R., & Frejd, T. (2000). Temporary in situ aluminum and zinc tethering in Diels-Alder reactions. Organic Letters, 2(9), 1283–1286.PubMedGoogle Scholar
  84. 84.
    Hintersteiner, M., Weidemann, T., Kimmerlin, T., Filiz, N., Buehler, C., & Auer, M. (2008). Covalent fluorescence labeling of His-tagged proteins on the surface of living cells. Chembiochem, 9(9), 1391–1395.PubMedGoogle Scholar
  85. 85.
    Kotzybahibert, F., Kapfer, I., & Goeldner, M. (1995). Recent trends in photoaffinity-labeling. Angewandte Chemie, International Edition in English, 34(12), 1296–1312.Google Scholar
  86. 86.
    Uchinomiya, S., Nonaka, H., Fujishima, S., Tsukiji, S., Ojida, A., & Hamachi, I. (2009). Site-specific covalent labeling of His-tag fused proteins with a reactive Ni(II)-NTA probe. Chemical Communications, 2009(39), 5880–5882.Google Scholar
  87. 87.
    Wong, S. S. (1993). Chemistry of protein conjugation and cross-linking. Boca Raton, FL: CRC Press. 340 p.Google Scholar
  88. 88.
    Papini, A., Rudolph, S., SiglmÜLler, G., Musiol, H. J., GÖHring, W., & Moroder, L. (1992). Alkylation of histidine with maleimido-compounds. International Journal of Peptide and Protein Research, 39(4), 348–355.PubMedGoogle Scholar
  89. 89.
    Basavaiah, D., Reddy, B. S., & Badsara, S. S. (2010). Recent contributions from the Baylis-Hillman reaction to organic chemistry. Chemical Reviews, 110(9), 5447–5674.PubMedGoogle Scholar
  90. 90.
    Aggarwal, V. K., Mereu, A., Tarver, G. J., & McCague, R. (1998). Metal- and ligand-accelerated catalysis of the Baylis-Hillman reaction. Journal of Organic Chemistry, 63(21), 7183–7189.PubMedGoogle Scholar
  91. 91.
    Basavaiah, D., Rao, K. V., & Reddy, R. J. (2007). The Baylis-Hillman reaction: A novel source of attraction, opportunities, and challenges in synthetic chemistry. Chemical Society Reviews, 36(10), 1581–1588.PubMedGoogle Scholar
  92. 92.
    Li, H., Wang, X. X., & Zhang, Y. M. (2005). Remarkable rate acceleration of water-promoted nucleophilic substitution of Baylis-Hillman acetate: A facile and highly efficient synthesis of N-substituted imidazole. Tetrahedron Letters, 46(31), 5233–5237.Google Scholar
  93. 93.
    Melman, G., Vimal, P., & Melman, A. (2009). Complementary dynamic assembly around an iron(III) cation. Inorganic Chemistry, 48(18), 8662–8664.PubMedGoogle Scholar
  94. 94.
    Lang, K., & Chin, J. W. (2014). Bioorthogonal reactions for labeling proteins. ACS Chemical Biology, 9(1), 16–20.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Chemistry & Biomolecular ScienceClarkson UniversityPotsdamUSA

Personalised recommendations