Selective Derivatization of Hexahistidine-Tagged Recombinant Proteins
Abstract
Covalent modification of proteins is extensively used in research and industry for biosensing, medical diagnostics, targeted drug delivery, and many other practical applications. The conventional method for production of protein conjugates has changed little in the last 20 years mostly relying on reactions of side chains of cysteine and lysine residues. Due to the presence of large numbers of similar reactive amino acid residues in proteins, common synthetic methods generally produce complex mixtures of products, which are difficult to separate. An emerging alternative technology for covalent modification of proteins involves formation of a covalent bond with a hexahistidine affinity tag present in a majority of recombinant proteins without interfering with other amino acid residues. The approach is based on formation of a ternary complex of the hexahistidine sequence with a bivalent metal cation chelated by ligand bearing an electrophilic Baylis-Hillman ester group capable of subsequent formation of a covalent bond with one of the histidine residues of the tag. The reaction proceeds under mild reaction conditions in neutral aqueous solutions under high dilutions (10−5 to 10−4 M) providing a stable covalent bond between the label and an imidazole residue in a hexahistidine tag at either C- or N-terminus. Because hexahistidine affinity tag methodology is a de-facto standard for preparation of recombinant proteins our approach can be easily implemented for selective derivatization of these proteins with fluorescent groups, alkynyl groups for “click” reactions, or biotinylation.
Keywords
Bioconjugation Proteins Histidine Affinity tag Coordination Metal cationsReferences
- 1.Vos, W. L., Koehorst, R. B. M., Spruijt, R. B., & Hemminga, M. A. (2005). Membrane-bound conformation of M13 major coat protein - A structure validation through fret-derived constraints. Journal of Biological Chemistry, 280(46), 38522–38527.PubMedGoogle Scholar
- 2.Roy, R., Hohng, S., & Ha, T. (2008). A practical guide to single-molecule FRET. Nature Methods, 5(6), 507–516.PubMedPubMedCentralGoogle Scholar
- 3.Miller, L. W., & Cornish, V. W. (2005). Selective chemical labeling of proteins in living cells. Current Opinion in Chemical Biology, 9(1), 56–61.PubMedGoogle Scholar
- 4.Hermanson, G. T. (2008). Bioconjugate techniques (2nd ed.p. xxx). Amsterdam; Boston, MA: Elsevier Academic Press, 1202 p.Google Scholar
- 5.Kelman, Z., Naktinis, V., & Odonnell, M. (1995). Radiolabeling of proteins for biochemical studies, in DNA replication (pp. 430–442). San Diego, CA: Academic Press Inc.Google Scholar
- 6.Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, 40(6), 1451–1463.Google Scholar
- 7.Park, J. W., Hong, K. L., Kirpotin, D. B., Colbern, G., Shalaby, R., Baselga, J., et al. (2002). Anti-HER2 immunoliposomes: Enhanced efficacy attributable to targeted delivery. Clinical Cancer Research, 8(4), 1172–1181.PubMedGoogle Scholar
- 8.Safavy, A., Raisch, K. P., Khazaeli, M. B., Buchsbaum, D. J., & Bonner, J. A. (1999). Paclitaxel derivatives for targeted therapy of cancer: Toward the development of smart taxanes. Journal of Medicinal Chemistry, 42(23), 4919–4924.PubMedGoogle Scholar
- 9.Caliceti, P., & Veronese, F. M. (2003). Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates. Advanced Drug Delivery Reviews, 55(10), 1261–1277.PubMedGoogle Scholar
- 10.Cosnier, S. (1999). Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review. Biosensors & Bioelectronics, 14(5), 443–456.Google Scholar
- 11.Sletten, E. M., & Bertozzi, C. R. (2009). Bioorthogonal chemistry: Fishing for selectivity in a sea of functionality. Angewandte Chemie-International Edition, 48(38), 6974–6998.PubMedGoogle Scholar
- 12.Bragg, P. D., & Hou, C. (1975). Subunit composition, function, and spatial arrangement in the Ca2+−and Mg2+−activated adenosine triphosphatases of Escherichia coli and Salmonella typhimurium. Archives of Biochemistry and Biophysics, 167(1), 311–321.PubMedGoogle Scholar
- 13.Rifai, A., & Wong, S. S. (1986). Preparation of phosphorylcholine-conjugated antigens. Journal of Immunological Methods, 94(1–2), 25–30.PubMedGoogle Scholar
- 14.Peng, L., Calton, G. J., & Burnett, J. W. (1987). Effect of borohydride reduction on antibodies. Applied Biochemistry and Biotechnology, 14(2), 91–99.PubMedGoogle Scholar
- 15.McFarland, J. M., & Francis, M. B. (2005). Reductive alkylation of proteins using iridium catalyzed transfer hydrogenation. Journal of the American Chemical Society, 127(39), 13490–13491.PubMedGoogle Scholar
- 16.King, T. P., Li, Y., & Kochoumian, L. (1978). Preparation of protein conjugates via intermolecular disulfide bond formation. Biochemistry, 17(8), 1499–1506.PubMedGoogle Scholar
- 17.Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82(1), 70–77.PubMedGoogle Scholar
- 18.Macmillan, D., Bill, R. M., Sage, K. A., Fern, D., & Flitsch, S. L. (2001). Selective in vitro glycosylation of recombinant proteins: Semi-synthesis of novel homogeneous glycoforms of human erythropoietin. Chemistry & Biology, 8(2), 133–145.Google Scholar
- 19.Gorin, G., & Doughty, G. (1968). Equilibrium constants for the reaction of glutathione with cystine and their relative oxidation-reduction potentials. Archives of Biochemistry and Biophysics, 126(2), 547–551.PubMedGoogle Scholar
- 20.Dirksen, A., Langereis, S., de Waal, B. F. M., van Genderen, M. H. P., Meijer, E. W., de Lussanet, Q. G., et al. (2004). Design and synthesis of a bimodal target-specific contrast agent for angiogenesis. Organic Letters, 6(26), 4857–4860.PubMedGoogle Scholar
- 21.McMahan, S. A., & Burgess, R. R. (1994). Use of aryl azide cross-linkers to investigate protein-protein interactions - an optimization of important conditions as applied to escherichia-coli rna-polymerase and localization of a sigma(70)-alpha cross-link to the c-terminal region of alpha. Biochemistry, 33(40), 12092–12099.PubMedGoogle Scholar
- 22.Joshi, N. S., Whitaker, L. R., & Francis, M. B. (2004). A three-component Mannich-type reaction for selective tyrosine bioconjugation. Journal of the American Chemical Society, 126(49), 15942–15943.PubMedGoogle Scholar
- 23.Kodadek, T., Duroux-Richard, I., & Bonnafous, J. C. (2005). Techniques: Oxidative cross-linking as an emergent tool for the analysis of receptor-mediated signalling events. Trends in Pharmacological Sciences, 26(4), 210–217.PubMedGoogle Scholar
- 24.Antos, J. M., & Francis, M. B. (2006). Transition metal catalyzed methods for site-selective protein modification. Current Opinion in Chemical Biology, 10(3), 253–262.PubMedGoogle Scholar
- 25.Matos, M. J., Oliveira, B. L., MartÃ, N., Martinez Saez, N., Guerreiro, A., Cal, P. M. S. D., et al. (2018). Chemo- and Regioselective lysine modification on native proteins. Journal of the American Chemical Society, 140(11), 4004–4017.PubMedPubMedCentralGoogle Scholar
- 26.Della-Penna, D., Christoffersen, R. E., & Bennett, A. B. (1986). Biotinylated proteins as molecular weight standards on Western blots. Analytical Biochemistry, 152(2), 329–332.PubMedGoogle Scholar
- 27.Green, N. M., Konieczny, L., Toms, E. J., & Valentine, R. C. (1971). The use of bifunctional biotinyl compounds to determine the arrangement of subunits in avidin. The Biochemical Journal, 125(3), 781–791.PubMedPubMedCentralGoogle Scholar
- 28.Wilchek, M., Bayer, E. A., & Livnah, O. (2006). Essentials of biorecognition: The (strept)avidin-biotin system as a model for protein-protein and protein-ligand interaction. Immunology Letters, 103(1), 27–32.PubMedGoogle Scholar
- 29.Debets, M. F., van der Doelen, C. W. J., Rutjes, F., & van Delft, F. L. (2010). Azide: A unique dipole for metal-free bioorthogonal ligations. ChemBioChem, 11(9), 1168–1184.PubMedGoogle Scholar
- 30.Jewett, J. C., & Bertozzi, C. R. (2010). Cu-free click cycloaddition reactions in chemical biology. Chemical Society Reviews., 39(4), 1272–1279.PubMedPubMedCentralGoogle Scholar
- 31.Mamidyala, S. K., & Finn, M. G. (2010). In situ click chemistry: Probing the binding landscapes of biological molecules. Chemical Society Reviews., 39(4), 1252–1261.PubMedGoogle Scholar
- 32.Kolb, H. C., Finn, M. G., & Sharpless, K. B. (2001). Click chemistry: Diverse chemical function from a few good reactions. Angewandte Chemie, International Edition, 40(11), 2004.Google Scholar
- 33.Rossin, R., Verkerk, P. R., van den Bosch, S. M., Vulders, R. C. M., Verel, I., Lub, J., et al. (2010). In vivo chemistry for pretargeted tumor imaging in live mice. Angewandte Chemie, International Edition, 49(19), 3375–3378.Google Scholar
- 34.Laughlin, S. T., Baskin, J. M., Amacher, S. L., & Bertozzi, C. R. (2008). In vivo imaging of membrane-associated glycans in developing zebrafish. Science, 320(5876), 664–667.PubMedPubMedCentralGoogle Scholar
- 35.Rostovtsev, V. V., Green, L. G., Fokin, V. V., & Sharpless, K. B. (2002). A stepwise Huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angewandte Chemie, International Edition, 41(14), 2596.Google Scholar
- 36.Hein, J. E., & Fokin, V. V. (2010). Copper-catalyzed azide-alkyne cycloaddition (CuAAC) and beyond: New reactivity of copper (I) acetylides. Chemical Society Reviews, 39(4), 1302–1315.PubMedPubMedCentralGoogle Scholar
- 37.Becer, C. R., Hoogenboom, R., & Schubert, U. S. (2009). Click chemistry beyond metal-catalyzed cycloaddition. Angewandte Chemie, International Edition, 48(27), 4900–4908.Google Scholar
- 38.Devaraj, N. K., & Weissleder, R. (2011). Biomedical applications of Tetrazine cycloadditions. Accounts of Chemical Research, 44(9), 816–827.PubMedPubMedCentralGoogle Scholar
- 39.Knall, A. C., & Slugovc, C. (2013). Inverse electron demand Diels-Alder (iEDDA)-initiated conjugation: A (high) potential click chemistry scheme. Chemical Society Reviews, 42(12), 5131–5142.PubMedGoogle Scholar
- 40.Devaraj, N. K., Weissleder, R., & Hilderbrand, S. A. (2008). Tetrazine-based cycloadditions: Application to pretargeted live cell imaging. Bioconjugate Chemistry, 19(12), 2297–2299.PubMedPubMedCentralGoogle Scholar
- 41.Tian, F., Lu, Y., Manibusan, A., Sellers, A., Tran, H., Sun, Y., et al. (2014). A general approach to site-specific antibody drug conjugates. Proceedings of the National Academy of Sciences, 111(5), 1766–1771.Google Scholar
- 42.Dilek, O., Lei, Z., Mukherjee, K., & Bane, S. (2015). Rapid formation of a stable boron-nitrogen heterocycle in dilute, neutral aqueous solution for bioorthogonal coupling reactions. Chemical Communications, 51(95), 16992–16995.PubMedGoogle Scholar
- 43.Doronina, S. O., Toki, B. E., Torgov, M. Y., Mendelsohn, B. A., Cerveny, C. G., Chace, D. F., et al. (2003). Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nature Biotechnology, 21(7), 778.PubMedGoogle Scholar
- 44.Wu, A. M., & Senter, P. D. (2005). Arming antibodies: Prospects and challenges for immunoconjugates. Nature Biotechnology, 23(9), 1137.PubMedGoogle Scholar
- 45.Akgun, B., Li, C., Hao, Y., Lambkin, G., Derda, R., & Hall, D. G. (2017). Synergic “click” boronate/thiosemicarbazone system for fast and irreversible bioorthogonal conjugation in live cells. Journal of the American Chemical Society, 139(40), 14285–14291.PubMedGoogle Scholar
- 46.Ulrich, S. B., Boturyn, D., Marra, A., Renaudet, O., & Dumy, P. (2014). Oxime ligation: A chemoselective click-type reaction for accessing multifunctional biomolecular constructs. Chemistry - A European Journal, 20(1), 34–41.Google Scholar
- 47.Mueller, B. M., Wrasidlo, W. A., & Reisfeld, R. A. (1990). Antibody conjugates with morpholinodoxorubicin and acid cleavable linkers. Bioconjugate Chemistry, 1(5), 325–330.PubMedGoogle Scholar
- 48.Sanderson, R. J., Hering, M. A., James, S. F., Sun, M. M. C., Doronina, S. O., Siadak, A. W., et al. (2005). In vivo drug-linker stability of an anti-CD30 dipeptide-linked auristatin immunoconjugate. Clinical Cancer Research, 11(2), 843–852.Google Scholar
- 49.Gaertner, H. F., Rose, K., Cotton, R., Timms, D., Camble, R., & Offord, R. E. (1992). Construction of protein analogs by site-specific condensation of unprotected fragments. Bioconjugate Chemistry, 3(3), 262–268.PubMedGoogle Scholar
- 50.Liu, C. F., & Tam, J. P. (1994). Peptide segment ligation strategy without use of protecting groups. Proceedings of the National Academy of Sciences of the United States of America, 91(14), 6584–6588.PubMedPubMedCentralGoogle Scholar
- 51.Bi, X., Hartono, D., & Yang, K.-L. (2008). Controlling orientations of immobilized oligopeptides using N-terminal cysteine labels. Langmuir, 24(10), 5238–5240.PubMedGoogle Scholar
- 52.Gilmore, J. M., Scheck, R. A., Esser-Kahn, A. P., Joshi, N. S., & Francis, M. B. (2006). N-terminal protein modification through a biomimetic transamination reaction. Angewandte Chemie, International Edition, 45(32), 5307–5311.Google Scholar
- 53.Nguyen, T., Joshi, N. S., & Francis, M. B. (2006). An affinity-based method for the purification of fluorescently-labeled biomolecules. Bioconjugate Chemistry, 17(4), 869–872.PubMedGoogle Scholar
- 54.Xie, J. M., & Schultz, P. G. (2006). Innovation: A chemical toolkit for proteins - an expanded genetic code. Nature Reviews Molecular Cell Biology, 7(10), 775–782.PubMedGoogle Scholar
- 55.Chin, J. W., Cropp, T. A., Anderson, J. C., Mukherji, M., Zhang, Z. W., & Schultz, P. G. (2003). An expanded eukaryotic genetic code. Science, 301(5635), 964–967.PubMedGoogle Scholar
- 56.Allen, J. J., Lazerwith, S. E., & Shokat, K. M. (2005). Bio-orthogonal affinity purification of direct kinase substrates. Journal of the American Chemical Society, 127(15), 5288–5289.PubMedPubMedCentralGoogle Scholar
- 57.Dube, D. H., Prescher, J. A., Quang, C. N., & Bertozzi, C. R. (2006). Probing mucin-type O-linked glycosylation in living animals. Proceedings of the National Academy of Sciences of the United States of America, 103(13), 4819–4824.PubMedPubMedCentralGoogle Scholar
- 58.Vocadlo, D. J., Hang, H. C., Kim, E. J., Hanover, J. A., & Bertozzi, C. R. (2003). A chemical approach for identifying O-GlcNAc-modified proteins in cells. Proceedings of the National Academy of Sciences of the United States of America, 100(16), 9116–9121.PubMedPubMedCentralGoogle Scholar
- 59.Rabuka, D., Hubbard, S. C., Laughlin, S. T., Argade, S. P., & Bertozzi, C. R. (2006). A chemical reporter strategy to probe glycoprotein fucosylation. Journal of the American Chemical Society, 128(37), 12078–12079.PubMedPubMedCentralGoogle Scholar
- 60.La Clair, J. J., Foley, T. L., Schegg, T. R., Regan, C. M., & Burkart, M. D. (2004). Manipulation of carrier proteins in antibiotic biosynthesis. Chemistry & Biology, 11(2), 195–201.Google Scholar
- 61.Yin, J., Liu, F., Li, X. H., & Walsh, C. T. (2004). Labeling proteins with small molecules by site-specific posttranslational modification. Journal of the American Chemical Society, 126(25), 7754–7755.PubMedGoogle Scholar
- 62.Arnau, J., Lauritzen, C., Petersen, G. E., & Pedersen, J. (2006). Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. Protein Expression and Purification, 48(1), 1–13.PubMedGoogle Scholar
- 63.Gaberc-Porekar, V., & Menart, V. (2005). Potential for using histidine tags in purification of proteins at large scale. Chemical Engineering & Technology, 28(11), 1306–1314.Google Scholar
- 64.Hochuli, E., Bannwarth, W., Dobeli, H., Gentz, R., & Stuber, D. (1988). Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate adsorbent. Nature Biotechnology, 6(11), 1321–1325.Google Scholar
- 65.Lata, S., Reichel, A., Brock, R., Tampe, R., & Piehler, J. (2005). High-affinity adaptors for switchable recognition of histidine-tagged proteins. Journal of the American Chemical Society, 127(29), 10205–10215.PubMedGoogle Scholar
- 66.Goldsmith, C. R., Jaworski, J., Sheng, M., & Lippard, S. J. (2006). Selective labeling of extracellular proteins containing polyhistidine sequences by a fluorescein - Nitrilotriacetic acid conjugate. Journal of the American Chemical Society, 128(2), 418–419.PubMedPubMedCentralGoogle Scholar
- 67.Baltus, R. E., Carmon, K. S., & Luck, L. A. (2007). Quartz crystal microbalance (QCM) with immobilized protein receptors: Comparison of response to ligand binding for direct protein immobilization and protein attachment via disulfide linker. Langmuir, 23(7), 3880–3885.PubMedGoogle Scholar
- 68.Paborsky, L. R., Dunn, K. E., Gibbs, C. S., & Dougherty, J. P. (1996). A nickel chelate microtiter plate assay for six histidine-containing proteins. Analytical Biochemistry, 234(1), 60–65.PubMedGoogle Scholar
- 69.Li, Y. J., Wang, H. Y., & Xie, W. H. (2009). Nitrilotriacetic acid (NTA) resin as a reversible immobilization matrix for Polyhistidine tagged enzyme in enzyme thermistor. Sensor Letters, 7(6), 1072–1076.Google Scholar
- 70.Bresolin, I. T. L., Borsoi-Ribeiro, M., Tamashiro, W., Augusto, E. F. P., Vijayalakshmi, M. A., & Bueno, S. M. A. (2010). Evaluation of immobilized metal-ion affinity chromatography (IMAC) as a technique for IgG(1) monoclonal antibodies purification: The effect of chelating ligand and support. Applied Biochemistry and Biotechnology, 160(7), 2148–2165.PubMedGoogle Scholar
- 71.Conti, M., Falini, G., & Samori, B. (2000). How strong is the coordination bond between a histidine tag and Ni-nitrilotriacetate? An experiment of mechanochemistry on single molecules. Angewandte Chemie, International Edition, 39(1), 215.Google Scholar
- 72.Hutschenreiter, S., Neumann, L., Radler, U., Schmitt, L., & Tampe, R. (2003). Metal-chelating amino acids as building blocks for synthetic receptors sensing metal ions and histidine-tagged proteins. ChemBioChem, 4(12), 1340–1344.PubMedGoogle Scholar
- 73.Tareste, D., Pincet, F. R., Brellier, M., Mioskowski, C., & Perez, E. (2005). The binding energy of two nitrilotriacetate groups sharing a nickel ion. Journal of the American Chemical Society, 127(11), 3879–3884.PubMedGoogle Scholar
- 74.Mehlenbacher, M. R., Bou-Abdallah, F., Liu, X. X., & Melman, A. (2015). Calorimetric studies of ternary complexes of Ni(II) and Cu(II) nitrilotriacetic acid and N-acetyloligohistidines. Inorganica Chimica Acta, 437, 152–158.Google Scholar
- 75.Knecht, S., Ricklin, D., Eberle, A. N., & Ernst, B. (2009). Oligohis-tags: Mechanisms of binding to Ni2+-NTA surfaces. Journal of Molecular Recognition, 22(4), 270–279.PubMedGoogle Scholar
- 76.Guignet, E. G., Hovius, R., & Vogel, H. (2004). Reversible site-selective labeling of membrane proteins in live cells. Nature Biotechnology, 22(4), 440–444.PubMedGoogle Scholar
- 77.Kapanidis, A. N., Ebright, Y. W., & Ebright, R. H. (2001). Site-specific incorporation of fluorescent probes into protein: Hexahistidine-tag-mediated fluorescent labeling with (Ni2+: Nitrilotriacetic acid)(n)-fluorochrome conjugates. Journal of the American Chemical Society, 123(48), 12123–12125.PubMedGoogle Scholar
- 78.Dorn, I. T., Neumaier, K. R., & Tampe, R. (1998). Molecular recognition of histidine-tagged molecules by metal-chelating lipids monitored by fluorescence energy transfer and correlation spectroscopy. Journal of the American Chemical Society, 120(12), 2753–2763.Google Scholar
- 79.Bachi, M. D., & Melman, A. (1996). Temporary sulfur connection in an intramolecular S(N)2 reaction. A stereocontrolled synthesis of (+/−)-kainic acid. Synlett, 1996(1), 60.Google Scholar
- 80.Bachi, M. D., Bilokin, Y. V., & Melman, A. (1998). Stereospecific intramolecular Michael addition to (−)-carvone based on temporary sulfur connection. Tetrahedron Letters, 39(19), 3035–3038.Google Scholar
- 81.Stork, G., & Chan, T. Y. (1995). Temporary magnesium and aluminum connections in [4 + 2] cycloadditions. Journal of the American Chemical Society, 117(24), 6595–6596.Google Scholar
- 82.Ward, D. E., & Abaee, M. S. (2000). Intramolecular Diels-Alder reaction by self-assembly of the components on a Lewis acid template. Organic Letters, 2(24), 3937–3940.PubMedGoogle Scholar
- 83.Bertozzi, F., Olsson, R., & Frejd, T. (2000). Temporary in situ aluminum and zinc tethering in Diels-Alder reactions. Organic Letters, 2(9), 1283–1286.PubMedGoogle Scholar
- 84.Hintersteiner, M., Weidemann, T., Kimmerlin, T., Filiz, N., Buehler, C., & Auer, M. (2008). Covalent fluorescence labeling of His-tagged proteins on the surface of living cells. Chembiochem, 9(9), 1391–1395.PubMedGoogle Scholar
- 85.Kotzybahibert, F., Kapfer, I., & Goeldner, M. (1995). Recent trends in photoaffinity-labeling. Angewandte Chemie, International Edition in English, 34(12), 1296–1312.Google Scholar
- 86.Uchinomiya, S., Nonaka, H., Fujishima, S., Tsukiji, S., Ojida, A., & Hamachi, I. (2009). Site-specific covalent labeling of His-tag fused proteins with a reactive Ni(II)-NTA probe. Chemical Communications, 2009(39), 5880–5882.Google Scholar
- 87.Wong, S. S. (1993). Chemistry of protein conjugation and cross-linking. Boca Raton, FL: CRC Press. 340 p.Google Scholar
- 88.Papini, A., Rudolph, S., SiglmÜLler, G., Musiol, H. J., GÖHring, W., & Moroder, L. (1992). Alkylation of histidine with maleimido-compounds. International Journal of Peptide and Protein Research, 39(4), 348–355.PubMedGoogle Scholar
- 89.Basavaiah, D., Reddy, B. S., & Badsara, S. S. (2010). Recent contributions from the Baylis-Hillman reaction to organic chemistry. Chemical Reviews, 110(9), 5447–5674.PubMedGoogle Scholar
- 90.Aggarwal, V. K., Mereu, A., Tarver, G. J., & McCague, R. (1998). Metal- and ligand-accelerated catalysis of the Baylis-Hillman reaction. Journal of Organic Chemistry, 63(21), 7183–7189.PubMedGoogle Scholar
- 91.Basavaiah, D., Rao, K. V., & Reddy, R. J. (2007). The Baylis-Hillman reaction: A novel source of attraction, opportunities, and challenges in synthetic chemistry. Chemical Society Reviews, 36(10), 1581–1588.PubMedGoogle Scholar
- 92.Li, H., Wang, X. X., & Zhang, Y. M. (2005). Remarkable rate acceleration of water-promoted nucleophilic substitution of Baylis-Hillman acetate: A facile and highly efficient synthesis of N-substituted imidazole. Tetrahedron Letters, 46(31), 5233–5237.Google Scholar
- 93.Melman, G., Vimal, P., & Melman, A. (2009). Complementary dynamic assembly around an iron(III) cation. Inorganic Chemistry, 48(18), 8662–8664.PubMedGoogle Scholar
- 94.Lang, K., & Chin, J. W. (2014). Bioorthogonal reactions for labeling proteins. ACS Chemical Biology, 9(1), 16–20.PubMedGoogle Scholar