Mass Spectrometry for Proteomics-Based Investigation

  • Alisa G. Woods
  • Izabela Sokolowska
  • Armand G. Ngounou Wetie
  • Devika Channaveerappa
  • Emmalyn J. Dupree
  • Madhuri Jayathirtha
  • Roshanak Aslebagh
  • Kelly L. Wormwood
  • Costel C. DarieEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1140)


Within the past years, we have witnessed a great improvement is mass spectrometry (MS) and proteomics approaches in terms of instrumentation, protein fractionation, and bioinformatics. With the current technology, protein identification alone is no longer sufficient. Both scientists and clinicians want not only to identify the proteins, but also to identify the protein’s post-translational modifications (PTMs), protein isoforms, protein truncation, protein-protein interactions (PPI), and protein quantitation. Here, we describe the principle of MS and proteomics, and strategies to identify proteins, protein’s PTMs, protein isoforms, protein truncation, PPIs, and protein quantitation. We also discuss the strengths and weaknesses within this field. Finally, in our concluding remarks we assess the role of mass spectrometry and proteomics in the scientific and clinical settings, in the near future. This chapter provides an introduction and overview for subsequent chapters that will discuss specific MS proteomic methodologies and their application to specific medical conditions. Other chapters will also touch upon areas that expand beyond proteomics, such as lipidomics and metabolomics.


Mass spectrometry Proteomics MALDI-MS LC-MS/MS 



Blue native PAGE


Chemical ionization


Collision-induced dissociation


Colorless native PAGE


Differential gel electrophoresis


Electric ionization


Electrospray ionization


Electrospray ionization mass spectrometry


Fast atom bombardment


Fourier transform


Ion trap


Liquid chromatography mass spectrometry




Matrix assisted laser desorption ionization


MALDI mass spectrometry


Mass spectrometry


Molecular weight


Plasma desorption




Sodium dodecyl sulfate-polyacrylamide gel electrophoresis


Total ion current/chromatogram


Time of flight



We would like to thank the past and current members of our lab for the great working environment.


  1. 1.
    Aebersold, R., & Mann, M. (2003). Mass spectrometry-based proteomics. Nature, 422(6928), 198–207.Google Scholar
  2. 2.
    Aivaliotis, M., Karas, M., & Tsiotis, G. (2006). High throughput two-dimensional blue-native electrophoresis: A tool for functional proteomics of cytoplasmatic protein complexes from Chlorobium tepidum. Photosynthesis Research, 88(2), 143–157.PubMedGoogle Scholar
  3. 3.
    Blagoev, B., Kratchmarova, I., Ong, S. E., Nielsen, M., Foster, L. J., & Mann, M. (2003). A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling. Nature Biotechnology, 21(3), 315–318.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Camacho-Carvajal, M. M., Wollscheid, B., Aebersold, R., Steimle, V., & Schamel, W. W. (2004). Two-dimensional blue native/SDS gel electrophoresis of multi-protein complexes from whole cellular lysates: A proteomics approach. Molecular & Cellular Proteomics, 3(2), 176–182.Google Scholar
  5. 5.
    Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., & Aebersold, R. (1999). Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnology, 17(10), 994–999.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Ong, S. E., Foster, L. J., & Mann, M. (2003). Mass spectrometric-based approaches in quantitative proteomics. Methods, 29(2), 124–130.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Shevchenko, A., Wilm, M., Vorm, O., & Mann, M. (1996). Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Analytical Chemistry, 68(5), 850–858.PubMedGoogle Scholar
  8. 8.
    Zhang, G., Spellman, D. S., Skolnik, E. Y., & Neubert, T. A. (2006). Quantitative phosphotyrosine proteomics of EphB2 signaling by stable isotope labeling with amino acids in cell culture (SILAC). Journal of Proteome Research, 5(3), 581–588.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Darie, C. (2013). Mass spectrometry and proteomics: Principle, workflow, challenges and perspectives. Modern Chemistry & Applications, 1(2), e105.Google Scholar
  10. 10.
    Darie, C. C. (2013). Mass spectrometry and its application in life sciences. Australian Journal of Chemistry, 66, 1–2.Google Scholar
  11. 11.
    Ngounou Wetie, A. G., Sokolowska, I., Woods, A. G., & Darie, C. C. (2013). Identification of post-translational modifications by mass spectrometry. Australian Journal of Chemistry, 66, 734–748.Google Scholar
  12. 12.
    Ngounou Wetie, A. G., Sokolowska, I., Woods, A. G., Roy, U., Deinhardt, K., & Darie, C. C. (2014). Protein-protein interactions: Switch from classical methods to proteomics and bioinformatics-based approaches. Cellular and Molecular Life Sciences, 71(2), 205–228.PubMedGoogle Scholar
  13. 13.
    Ngounou Wetie, A. G., Sokolowska, I., Wormwood, K., Michel, T. M., Thome, J., Darie, C. C., et al. (2013). Mass spectrometry for the detection of potential psychiatric biomarkers. Journal of Molecular Psychiatry, 1, 8.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Sokolowska, I., Ngounou Wetie, A. G., Roy, U., Woods, A. G., & Darie, C. C. (2013). Mass spectrometry investigation of glycosylation on the NXS/T sites in recombinant glycoproteins. Biochimica et Biophysica Acta, 1834(8), 1474–1483.PubMedGoogle Scholar
  15. 15.
    Sokolowska, I., Ngounou Wetie, A. G., Woods, A. G., & Darie, C. C. (2013). Applications of mass spectrometry in proteomics. Australian Journal of Chemistry, 66, 721–733.Google Scholar
  16. 16.
    Sokolowska, I., Woods, A. G., Wagner, J., Dorler, J., Wormwood, K., Thome, J., et al. (2011). Mass spectrometry for proteomics-based investigation of oxidative stress and heat shock proteins. In S. Andreescu & M. Hepel (Eds.), Oxidative stress: Diagnostics, prevention, and therapy. Washington, DC: American Chemical Society.Google Scholar
  17. 17.
    Woods, A. G., Ngounou Wetie, A. G., Sokolowska, I., Russell, S., Ryan, J. P., Michel, T. M., et al. (2013). Mass spectrometry as a tool for studying autism spectrum disorder. Journal of Molecular Psychiatry, 1, 6.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Darie, C. C., Biniossek, M. L., Winter, V., Mutschler, B., & Haehnel, W. (2005). Isolation and structural characterization of the Ndh complex from mesophyll and bundle sheath chloroplasts of Zea mays. The FEBS Journal, 272(11), 2705–2716.PubMedGoogle Scholar
  19. 19.
    Darie, C. C., Janssen, W. G., Litscher, E. S., & Wassarman, P. M. (2008). Purified trout egg vitelline envelope proteins VEbeta and VEgamma polymerize into homomeric fibrils from dimers in vitro. Biochimica et Biophysica Acta, 1784(2), 385–392.PubMedGoogle Scholar
  20. 20.
    Schagger, H., Cramer, W. A., & von Jagow, G. (1994). Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis. Analytical Biochemistry, 217(2), 220–230.PubMedGoogle Scholar
  21. 21.
    Schagger, H., & von Jagow, G. (1991). Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Analytical Biochemistry, 199(2), 223–231.PubMedGoogle Scholar
  22. 22.
    Spellman, D. S., Deinhardt, K., Darie, C. C., Chao, M. V., & Neubert, T. A. (2008). Stable isotopic labeling by amino acids in cultured primary neurons: Application to brain-derived neurotrophic factor-dependent phosphotyrosine-associated signaling. Molecular & Cellular Proteomics, 7(6), 1067–1076.Google Scholar
  23. 23.
    Darie, C. C., Shetty, V., Spellman, D. S., Zhang, G., Xu, C., Cardasis, H. L., et al. (2008). Blue Native PAGE and mass spectrometry analysis of the ephrin stimulation-dependent protein-protein interactions in NG108-EphB2 cells. In Applications of mass spectrometry in life safety (NATO science for peace and security series). Düsseldorf, Germany: Springer.Google Scholar
  24. 24.
    Darie, C. C., Litscher, E. S., & Wassarman, P. M. (2008). Structure, processing, and polymerization of rainbow trout egg vitelline envelope proteins. In Applications of mass spectrometry in life safety (NATO science for peace and security series). Düsseldorf, Germany: Springer.Google Scholar
  25. 25.
    Darie, C. C., Biniossek, M. L., Gawinowicz, M. A., Milgrom, Y., Thumfart, J. O., Jovine, L., et al. (2005). Mass spectrometric evidence that proteolytic processing of rainbow trout egg vitelline envelope proteins takes place on the egg. The Journal of Biological Chemistry, 280(45), 37585–37598.PubMedGoogle Scholar
  26. 26.
    Darie, C. C., Biniossek, M. L., Jovine, L., Litscher, E. S., & Wassarman, P. M. (2004). Structural characterization of fish egg vitelline envelope proteins by mass spectrometry. Biochemistry, 43(23), 7459–7478.PubMedGoogle Scholar
  27. 27.
    Schagger, H. (2006). Tricine-SDS-PAGE. Nature Protocols, 1(1), 16–22.PubMedGoogle Scholar
  28. 28.
    Schagger, H., & von Jagow, G. (1987). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical Biochemistry, 166(2), 368–379.PubMedGoogle Scholar
  29. 29.
    Jovine, L., Darie, C. C., Litscher, E. S., & Wassarman, P. M. (2005). Zona pellucida domain proteins. Annual Review of Biochemistry, 74, 83–114.PubMedGoogle Scholar
  30. 30.
    Litscher, E. S., Janssen, W. G., Darie, C. C., & Wassarman, P. M. (2008). Purified mouse egg zona pellucida glycoproteins polymerize into homomeric fibrils under non-denaturing conditions. Journal of Cellular Physiology, 214(1), 153–157.PubMedGoogle Scholar
  31. 31.
    Wassarman, P. M., Jovine, L., Qi, H., Williams, Z., Darie, C., & Litscher, E. S. (2005). Recent aspects of mammalian fertilization research. Molecular and Cellular Endocrinology, 234(1–2), 95–103.PubMedGoogle Scholar
  32. 32.
    Darie, C. (2013). Investigation of protein-protein interactions by Blue Native-PAGE & Mass Spectrometry. Modern Chemistry & Applications, 1(3), e111.Google Scholar
  33. 33.
    Darie, C. (2013). Post-translational modification (PTM) proteomics: Challenges and perspectives. Modern Chemistry & Applications, 1, e114.Google Scholar
  34. 34.
    Woods, A. G., Sokolowska, I., Yakubu, R., Butkiewicz, M., LaFleur, M., Talbot, C., et al. (2011). Blue native page and mass spectrometry as an approach for the investigation of stable and transient protein-protein interactions. In S. Andreescu & M. Hepel (Eds.), Oxidative stress: Diagnostics, prevention, and therapy. Washington, DC: American Chemical Society.Google Scholar
  35. 35.
    Ghezzi, P., & Bonetto, V. (2003). Redox proteomics: Identification of oxidatively modified proteins. Proteomics, 3(7), 1145–1153.PubMedGoogle Scholar
  36. 36.
    Li, X., Pan, W., Yang, G. Z., Di, Y. N., Zhao, F., Zhu, L. Y., et al. (2011). Proteome analysis of differential protein expression in brain of rats with type 1 diabetes mellitus. Experimental and Clinical Endocrinology & Diabetes, 119(5), 265–270.Google Scholar
  37. 37.
    Muroi, M., Kazami, S., Noda, K., Kondo, H., Takayama, H., Kawatani, M., et al. (2010). Application of proteomic profiling based on 2D-DIGE for classification of compounds according to the mechanism of action. Chemistry & Biology, 17(5), 460–470.Google Scholar
  38. 38.
    Polden, J., McManus, C. A., Remedios, C. D., & Dunn, M. J. (2011). A 2-D gel reference map of the basic human heart proteome. Proteomics, 11(17), 3582–3586.PubMedGoogle Scholar
  39. 39.
    Stefanescu, R., Iacob, R. E., Damoc, E. N., Marquardt, A., Amstalden, E., Manea, M., et al. (2007). Mass spectrometric approaches for elucidation of antigenantibody recognition structures in molecular immunology. European Journal of Mass Spectrometry (Chichester, England), 13(1), 69–75.Google Scholar
  40. 40.
    Sun, X., Jia, H. L., Xiao, C. L., Yin, X. F., Yang, X. Y., Lu, J., et al. (2011). Bacterial proteome of Streptococcus pneumoniae through multidimensional separations coupled with LC-MS/MS. OMICS, 15(7–8), 477–482.PubMedGoogle Scholar
  41. 41.
    Wang, Y., Li, R., Du, D., Zhang, C., Yuan, H., Zeng, R., et al. (2006). Proteomic analysis reveals novel molecules involved in insulin signaling pathway. Journal of Proteome Research, 5(4), 846–855.PubMedGoogle Scholar
  42. 42.
    Bauw, G., Rasmussen, H. H., van den Bulcke, M., van Damme, J., Puype, M., Gesser, B., et al. (1990). Two-dimensional gel electrophoresis, protein electroblotting and microsequencing: A direct link between proteins and genes. Electrophoresis, 11(7), 528–536.PubMedGoogle Scholar
  43. 43.
    Celis, J. E., & Gromov, P. (1999). 2D protein electrophoresis: Can it be perfected? Current Opinion in Biotechnology, 10(1), 16–21.PubMedGoogle Scholar
  44. 44.
    Celis, J. E., Gromov, P., Ostergaard, M., Madsen, P., Honore, B., Dejgaard, K., et al. (1996). Human 2-D PAGE databases for proteome analysis in health and disease: FEBS Letters, 398(2–3), 129–134.PubMedGoogle Scholar
  45. 45.
    Celis, J. E., Gromova, I., Moreira, J. M., Cabezon, T., & Gromov, P. (2004). Impact of proteomics on bladder cancer research. Pharmacogenomics, 5(4), 381–394.PubMedGoogle Scholar
  46. 46.
    Taurines, R., Dudley, E., Conner, A. C., Grassl, J., Jans, T., Guderian, F., et al. (2010). Serum protein profiling and proteomics in autistic spectrum disorder using magnetic bead-assisted mass spectrometry. European Archives of Psychiatry and Clinical Neuroscience, 260(3), 249–255.PubMedGoogle Scholar
  47. 47.
    Taurines, R., Dudley, E., Grassl, J., Warnke, A., Gerlach, M., Coogan, A. N., et al. (2011). Proteomic research in psychiatry. Journal of Psychopharmacology, 25(2), 151–196.PubMedGoogle Scholar
  48. 48.
    Dass, C. (2007). Fundamentals of contemporary mass spectrometry. In Wiley-Interscience series on mass spectrometry. Hoboken, NJ: Wiley-Interscience. xx,585 p.Google Scholar
  49. 49.
    de Hoffmann, E., & Stroobant, V. (2007). Mass spectrometry: Principles and applications (3rd ed.p. xii). Chichester, West Sussex, England/Hoboken, NJ: John Wiley, 489 p.Google Scholar
  50. 50.
    Abate, S., Ahn, Y. G., Kind, T., Cataldi, T. R., & Fiehn, O. (2010). Determination of elemental compositions by gas chromatography/time-of-flight mass spectrometry using chemical and electron ionization. Rapid Communications in Mass Spectrometry, 24(8), 1172–1180.PubMedGoogle Scholar
  51. 51.
    Harrison, A. G. (1992). Chemical ionization mass spectrometry (2nd ed.208 p). Boca Raton, FL: CRC Press.Google Scholar
  52. 52.
    Rivera-Rodriguez, L. B., Rodriguez-Estrella, R., Ellington, J. J., & Evans, J. J. (2007). Quantification of low levels of organochlorine pesticides using small volumes (<or=100 microl) of plasma of wild birds through gas chromatography negative chemical ionization mass spectrometry. Environmental Pollution, 148(2), 654–662.PubMedGoogle Scholar
  53. 53.
    Dougherty, R. C. (1981). Negative chemical ionization mass spectrometry: Applications in environmental analytical chemistry. Biomedical Mass Spectrometry, 8(7), 283–292.PubMedGoogle Scholar
  54. 54.
    Zaikin, V. G., & Halket, J. M. (2006). Derivatization in mass spectrometry--8. Soft ionization mass spectrometry of small molecules. European Journal of Mass Spectrometry (Chichester, England), 12(2), 79–115.Google Scholar
  55. 55.
    Marshall, A. G., Hendrickson, C. L., & Jackson, G. S. (1998). Fourier transform ion cyclotron resonance mass spectrometry: A primer. Mass Spectrometry Reviews, 17(1), 1–35.Google Scholar
  56. 56.
    Martin, S. E., Shabanowitz, J., Hunt, D. F., & Marto, J. A. (2000). Subfemtomole MS and MS/MS peptide sequence analysis using nano-HPLC micro-ESI fourier transform ion cyclotron resonance mass spectrometry. Analytical Chemistry, 72(18), 4266–4274.PubMedGoogle Scholar
  57. 57.
    Parker, C. E., Warren, M. R., & Mocanu, V. (2010). Mass spectrometry for proteomics. In O. Alzate (Ed.), Neuroproteomics. Boca Raton, FL: CRC Press/Taylor & Francis.Google Scholar
  58. 58.
    Yates, J. R., Ruse, C. I., & Nakorchevsky, A. (2009). Proteomics by mass spectrometry: Approaches, advances, and applications. Annual Review of Biomedical Engineering, 11, 49–79.PubMedGoogle Scholar
  59. 59.
    Domon, B., & Aebersold, R. (2006). Mass spectrometry and protein analysis. Science, 312(5771), 212–217.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Viswanathan, S., Unlu, M., & Minden, J. S. (2006). Two-dimensional difference gel electrophoresis. Nature Protocols, 1(3), 1351–1358.PubMedGoogle Scholar
  61. 61.
    Ong, S. E., Blagoev, B., Kratchmarova, I., Kristensen, D. B., Steen, H., Pandey, A., et al. (2002). Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Molecular & Cellular Proteomics, 1(5), 376–386.Google Scholar
  62. 62.
    Stemmann, O., Zou, H., Gerber, S. A., Gygi, S. P., & Kirschner, M. W. (2001). Dual inhibition of sister chromatid separation at metaphase. Cell, 107(6), 715–726.PubMedGoogle Scholar
  63. 63.
    Anderson, L., & Hunter, C. L. (2006). Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Molecular & Cellular Proteomics, 5(4), 573–588.Google Scholar
  64. 64.
    Liu, H., Sadygov, R. G., & Yates 3rd, J. R. (2004). A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Analytical Chemistry, 76(14), 4193–4201.Google Scholar
  65. 65.
    McLafferty, F. W., Breuker, K., Jin, M., Han, X., Infusini, G., Jiang, H., et al. (2007). Top-down MS, a powerful complement to the high capabilities of proteolysis proteomics. The FEBS Journal, 274(24), 6256–6268.PubMedGoogle Scholar
  66. 66.
    McDonald, W. H., & Yates 3rd, J. R. (2003). Shotgun proteomics: Integrating technologies to answer biological questions. Current Opinion in Molecular Therapeutics, 5(3), 302–309.PubMedGoogle Scholar
  67. 67.
    Wu, S., Lourette, N. M., Tolic, N., Zhao, R., Robinson, E. W., Tolmachev, A. V., et al. (2009). An integrated top-down and bottom-up strategy for broadly characterizing protein isoforms and modifications. Journal of Proteome Research, 8(3), 1347–1357.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Han, X., Aslanian, A., & Yates 3rd, J. R. (2008). Mass spectrometry for proteomics. Current Opinion in Chemical Biology, 12(5), 483–490.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Savitski, M. F., & Savitski, M. M. (2010). Unbiased detection of posttranslational modifications using mass spectrometry. Methods in Molecular Biology, 673, 203–210.PubMedGoogle Scholar
  70. 70.
    Spiro, R. G. (2002). Protein glycosylation: Nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology, 12(4), 43R–56R.PubMedGoogle Scholar
  71. 71.
    Marino, K., Bones, J., Kattla, J. J., & Rudd, P. M. (2010). A systematic approach to protein glycosylation analysis: A path through the maze. Nature Chemical Biology, 6(10), 713–723.PubMedGoogle Scholar
  72. 72.
    Read, E. K., Park, J. T., & Brorson, K. A. (2011). Industry and regulatory experience of the glycosylation of monoclonal antibodies. Biotechnology and Applied Biochemistry, 58(4), 213–219.PubMedGoogle Scholar
  73. 73.
    Kamoda, S., & Kakehi, K. (2008). Evaluation of glycosylation for quality assurance of antibody pharmaceuticals by capillary electrophoresis. Electrophoresis, 29(17), 3595–3604.PubMedGoogle Scholar
  74. 74.
    Leymarie, N., & Zaia, J. (2012). Effective use of mass spectrometry for glycan and glycopeptide structural analysis. Analytical Chemistry, 84(7), 3040–3048.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Pan, S., Chen, R., Aebersold, R., & Brentnall, T. A. (2011). Mass spectrometry based glycoproteomics-from a proteomics perspective. Molecular and Cellular Proteomics, 10(1), R110 003251.PubMedGoogle Scholar
  76. 76.
    Morelle, W., & Michalski, J. C. (2007). Analysis of protein glycosylation by mass spectrometry. Nature Protocols, 2(7), 1585–1602.PubMedGoogle Scholar
  77. 77.
    Wuhrer, M., Catalina, M. I., Deelder, A. M., & Hokke, C. H. (2007). Glycoproteomics based on tandem mass spectrometry of glycopeptides. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 849(1–2), 115–128.PubMedGoogle Scholar
  78. 78.
    Mechref, Y., Madera, M., & Novotny, M. V. (2008). Glycoprotein enrichment through lectin affinity techniques. Methods in Molecular Biology, 424, 373–396.PubMedGoogle Scholar
  79. 79.
    Bond, M. R., & Kohler, J. J. (2007). Chemical methods for glycoprotein discovery. Current Opinion in Chemical Biology, 11(1), 52–58.PubMedGoogle Scholar
  80. 80.
    Tarrant, M. K., & Cole, P. A. (2009). The chemical biology of protein phosphorylation. Annual Review of Biochemistry, 78, 797–825.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Blume-Jensen, P., & Hunter, T. (2001). Oncogenic kinase signalling. Nature, 411(6835), 355–365.PubMedGoogle Scholar
  82. 82.
    Cohen, P. (2001). The role of protein phosphorylation in human health and disease. The Sir Hans Krebs Medal Lecture. European Journal of Biochemistry, 268(19), 5001–5010.PubMedGoogle Scholar
  83. 83.
    Badiola, N., Suarez-Calvet, M., & Lleo, A. (2010). Tau phosphorylation and aggregation as a therapeutic target in tauopathies. CNS & Neurological Disorders Drug Targets, 9(6), 727–740.Google Scholar
  84. 84.
    Cohen, P. (2002). Protein kinases--the major drug targets of the twenty-first century? Nature Reviews. Drug Discovery, 1(4), 309–315.PubMedGoogle Scholar
  85. 85.
    Strebhardt, K. (2010). Multifaceted polo-like kinases: Drug targets and antitargets for cancer therapy. Nature Reviews. Drug Discovery, 9(8), 643–660.PubMedGoogle Scholar
  86. 86.
    Le Blanc, J. C., Hager, J. W., Ilisiu, A. M., Hunter, C., Zhong, F., & Chu, I. (2003). Unique scanning capabilities of a new hybrid linear ion TRAP mass spectrometer (Q TRAP) used for high sensitivity proteomics applications. Proteomics, 3(6), 859–869.PubMedGoogle Scholar
  87. 87.
    Unwin, R. D., Griffiths, J. R., Leverentz, M. K., Grallert, A., Hagan, I. M., & Whetton, A. D. (2005). Multiple reaction monitoring to identify sites of protein phosphorylation with high sensitivity. Molecular & Cellular Proteomics, 4(8), 1134–1144.Google Scholar
  88. 88.
    Xu, C. F., Lu, Y., Ma, J., Mohammadi, M., & Neubert, T. A. (2005). Identification of phosphopeptides by MALDI Q-TOF MS in positive and negative ion modes after methyl esterification. Molecular & Cellular Proteomics, 4(6), 809–818.Google Scholar
  89. 89.
    Beltran, L., & Cutillas, P. R. (2012). Advances in phosphopeptide enrichment techniques for phosphoproteomics. Amino Acids, 43(3), 1009–1024.PubMedGoogle Scholar
  90. 90.
    Corthals, G. L., Aebersold, R., & Goodlett, D. R. (2005). Identification of phosphorylation sites using microimmobilized metal affinity chromatography. Methods in Enzymology, 405, 66–81.PubMedGoogle Scholar
  91. 91.
    Ngounou Wetie, A. G., Sokolowska, I., Woods, A. G., Wormwood, K. L., Dao, S., Patel, S., et al. (2013). Automated mass spectrometry-based functional assay for the routine analysis of the secretome. Journal of Laboratory Automation, 18(1), 19–29.PubMedGoogle Scholar
  92. 92.
    Gorman, J. J., Wallis, T. P., & Pitt, J. J. (2002). Protein disulfide bond determination by mass spectrometry. Mass Spectrometry Reviews, 21(3), 183–216.PubMedGoogle Scholar
  93. 93.
    McAuley, A., Jacob, J., Kolvenbach, C. G., Westland, K., Lee, H. J., Brych, S. R., et al. (2008). Contributions of a disulfide bond to the structure, stability, and dimerization of human IgG1 antibody CH3 domain. Protein Science, 17(1), 95–106.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Sokolowska, I., Gawinowicz, M. A., Ngounou Wetie, A. G., & Darie, C. C. (2012). Disulfide proteomics for identification of extracellular or secreted proteins. Electrophoresis, 33(16), 2527–2536.PubMedGoogle Scholar
  95. 95.
    Sokolowska, I., Ngounou Wetie, A. G., Woods, A. G., & Darie, C. C. (2012). Automatic determination of disulfide bridges in proteins. Journal of Laboratory Automation, 17(6), 408–416.PubMedGoogle Scholar
  96. 96.
    Panchaud, A., Affolter, M., Moreillon, P., & Kussmann, M. (2008). Experimental and computational approaches to quantitative proteomics: Status quo and outlook. Journal of Proteomics, 71(1), 19–33.PubMedGoogle Scholar
  97. 97.
    Berkelman, T. (2008). Quantitation of protein in samples prepared for 2-D electrophoresis. Methods in Molecular Biology, 424, 43–49.PubMedGoogle Scholar
  98. 98.
    Bantscheff, M., Schirle, M., Sweetman, G., Rick, J., & Kuster, B. (2007). Quantitative mass spectrometry in proteomics: A critical review. Analytical and Bioanalytical Chemistry, 389(4), 1017–1031.PubMedGoogle Scholar
  99. 99.
    Xie, F., Liu, T., Qian, W. J., Petyuk, V. A., & Smith, R. D. (2011). Liquid chromatography-mass spectrometry-based quantitative proteomics. The Journal of Biological Chemistry, 286(29), 25443–25449.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Pan, S., Aebersold, R., Chen, R., Rush, J., Goodlett, D. R., McIntosh, M. W., et al. (2009). Mass spectrometry based targeted protein quantification: Methods and applications. Journal of Proteome Research, 8(2), 787–797.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Negishi, A., Ono, M., Handa, Y., Kato, H., Yamashita, K., Honda, K., et al. (2009). Large-scale quantitative clinical proteomics by label-free liquid chromatography and mass spectrometry. Cancer Science, 100(3), 514–519.PubMedGoogle Scholar
  102. 102.
    Ono, M., Shitashige, M., Honda, K., Isobe, T., Kuwabara, H., Matsuzuki, H., et al. (2006). Label-free quantitative proteomics using large peptide data sets generated by nanoflow liquid chromatography and mass spectrometry. Molecular & Cellular Proteomics, 5(7), 1338–1347.Google Scholar
  103. 103.
    Qian, W. J., Jacobs, J. M., Camp 2nd, D. G., Monroe, M. E., Moore, R. J., Gritsenko, M. A., et al. (2005). Comparative proteome analyses of human plasma following in vivo lipopolysaccharide administration using multidimensional separations coupled with tandem mass spectrometry. Proteomics, 5(2), 572–584.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Petyuk, V. A., Jaitly, N., Moore, R. J., Ding, J., Metz, T. O., Tang, K., et al. (2008). Elimination of systematic mass measurement errors in liquid chromatography-mass spectrometry based proteomics using regression models and a priori partial knowledge of the sample content. Analytical Chemistry, 80(3), 693–706.PubMedGoogle Scholar
  105. 105.
    Strittmatter, E. F., Ferguson, P. L., Tang, K., & Smith, R. D. (2003). Proteome analyses using accurate mass and elution time peptide tags with capillary LC time-of-flight mass spectrometry. Journal of the American Society for Mass Spectrometry, 14(9), 980–991.PubMedGoogle Scholar
  106. 106.
    Zhang, R., & Regnier, F. E. (2002). Minimizing resolution of isotopically coded peptides in comparative proteomics. Journal of Proteome Research, 1(2), 139–147.PubMedGoogle Scholar
  107. 107.
    Julka, S., & Regnier, F. (2004). Quantification in proteomics through stable isotope coding: A review. Journal of Proteome Research, 3(3), 350–363.PubMedGoogle Scholar
  108. 108.
    Bronstrup, M. (2004). Absolute quantification strategies in proteomics based on mass spectrometry. Expert Review of Proteomics, 1(4), 503–512.PubMedGoogle Scholar
  109. 109.
    Gerber, S. A., Rush, J., Stemman, O., Kirschner, M. W., & Gygi, S. P. (2003). Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proceedings of the National Academy of Sciences of the United States of America, 100(12), 6940–6945.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Kirkpatrick, D. S., Gerber, S. A., & Gygi, S. P. (2005). The absolute quantification strategy: A general procedure for the quantification of proteins and post-translational modifications. Methods, 35(3), 265–273.PubMedGoogle Scholar
  111. 111.
    Zhang, G., & Neubert, T. A. (2011). Comparison of three quantitative phosphoproteomic strategies to study receptor tyrosine kinase signaling. Journal of Proteome Research, 10(12), 5454–5462.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Zhang, G., Deinhardt, K., Chao, M. V., & Neubert, T. A. (2011). Study of neurotrophin-3 signaling in primary cultured neurons using multiplex stable isotope labeling with amino acids in cell culture. Journal of Proteome Research, 10(5), 2546–2554.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Deinhardt, K., Kim, T., Spellman, D. S., Mains, R. E., Eipper, B. A., Neubert, T. A., et al. (2011). Neuronal growth cone retraction relies on proneurotrophin receptor signaling through Rac. Science Signaling, 4(202), ra82.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Zhang, G., Ueberheide, B. M., Waldemarson, S., Myung, S., Molloy, K., Eriksson, J., et al. (2010). Protein quantitation using mass spectrometry. Methods in Molecular Biology, 673, 211–222.PubMedGoogle Scholar
  115. 115.
    Neubert, T. A., & Tempst, P. (2010). Super-SILAC for tumors and tissues. Nature Methods, 7(5), 361–362.PubMedGoogle Scholar
  116. 116.
    Zhang, G., & Neubert, T. A. (2009). Use of stable isotope labeling by amino acids in cell culture (SILAC) for phosphotyrosine protein identification and quantitation. Methods in Molecular Biology, 527, 79–92. xi.PubMedGoogle Scholar
  117. 117.
    Zhang, G., Fenyo, D., & Neubert, T. A. (2009). Evaluation of the variation in sample preparation for comparative proteomics using stable isotope labeling by amino acids in cell culture. Journal of Proteome Research, 8(3), 1285–1292.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Zhang, G., Fenyo, D., & Neubert, T. A. (2008). Screening for EphB signaling effectors using SILAC with a linear ion trap-orbitrap mass spectrometer. Journal of Proteome Research, 7(11), 4715–4726.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Zhang, G., & Neubert, T. A. (2006). Automated comparative proteomics based on multiplex tandem mass spectrometry and stable isotope labeling. Molecular & Cellular Proteomics, 5(2), 401–411.Google Scholar
  120. 120.
    Guo, A., Villen, J., Kornhauser, J., Lee, K. A., Stokes, M. P., Rikova, K., et al. (2008). Signaling networks assembled by oncogenic EGFR and c-Met. Proceedings of the National Academy of Sciences of the United States of America, 105(2), 692–697.PubMedPubMedCentralGoogle Scholar
  121. 121.
    Kruger, M., Moser, M., Ussar, S., Thievessen, I., Luber, C. A., Forner, F., et al. (2008). SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell, 134(2), 353–364.PubMedGoogle Scholar
  122. 122.
    Zanivan, S., Krueger, M., & Mann, M. (2012). In vivo quantitative proteomics: The SILAC mouse. Methods in Molecular Biology, 757, 435–450.PubMedGoogle Scholar
  123. 123.
    Muth, T., Keller, D., Puetz, S. M., Martens, L., Sickmann, A., & Boehm, A. M. (2010). jTraqX: A free, platform independent tool for isobaric tag quantitation at the protein level. Proteomics, 10(6), 1223–1225.PubMedGoogle Scholar
  124. 124.
    Ross, P. L., Huang, Y. N., Marchese, J. N., Williamson, B., Parker, K., Hattan, S., et al. (2004). Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Molecular & Cellular Proteomics, 3(12), 1154–1169.Google Scholar
  125. 125.
    Dayon, L., Hainard, A., Licker, V., Turck, N., Kuhn, K., Hochstrasser, D. F., et al. (2008). Relative quantification of proteins in human cerebrospinal fluids by MS/MS using 6-plex isobaric tags. Analytical Chemistry, 80(8), 2921–2931.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Holman, S. W., Sims, P. F., & Eyers, C. E. (2012). The use of selected reaction monitoring in quantitative proteomics. Bioanalysis, 4(14), 1763–1786.PubMedGoogle Scholar
  127. 127.
    Wolf-Yadlin, A., Hautaniemi, S., Lauffenburger, D. A., & White, F. M. (2007). Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks. Proceedings of the National Academy of Sciences of the United States of America, 104(14), 5860–5865.PubMedPubMedCentralGoogle Scholar
  128. 128.
    Duncan, M. W., Aebersold, R., & Caprioli, R. M. (2010). The pros and cons of peptide-centric proteomics. Nature Biotechnology, 28(7), 659–664.PubMedGoogle Scholar
  129. 129.
    Addona, T. A., Abbatiello, S. E., Schilling, B., Skates, S. J., Mani, D. R., Bunk, D. M., et al. (2009). Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. Nature Biotechnology, 27(7), 633–641.PubMedPubMedCentralGoogle Scholar
  130. 130.
    Koh, G. C., Porras, P., Aranda, B., Hermjakob, H., & Orchard, S. E. (2012). Analyzing protein-protein interaction networks. Journal of Proteome Research, 11(4), 2014–2031.PubMedGoogle Scholar
  131. 131.
    De Las Rivas, J., & Fontanillo, C. (2010). Protein-protein interactions essentials: Key concepts to building and analyzing interactome networks. PLoS Computational Biology, 6(6), e1000807.PubMedPubMedCentralGoogle Scholar
  132. 132.
    Cavanagh, J., Thompson, R., Bobay, B., Benson, L. M., & Naylor, S. (2002). Stoichiometries of protein-protein/DNA binding and conformational changes for the transition-state regulator AbrB measured by pseudo cell-size exclusion chromatography-mass spectrometry. Biochemistry, 41(25), 7859–7865.PubMedGoogle Scholar
  133. 133.
    Wen, J., Arakawa, T., & Philo, J. S. (1996). Size-exclusion chromatography with on-line light-scattering, absorbance, and refractive index detectors for studying proteins and their interactions. Analytical Biochemistry, 240(2), 155–166.PubMedGoogle Scholar
  134. 134.
    Mayer, C. L., Snyder, W. K., Swietlicka, M. A., Vanschoiack, A. D., Austin, C. R., & McFarland, B. J. (2009). Size-exclusion chromatography can identify faster-associating protein complexes and evaluate design strategies. BMC Research Notes, 2, 135.PubMedPubMedCentralGoogle Scholar
  135. 135.
    Berkowitz, S. A. (2006). Role of analytical ultracentrifugation in assessing the aggregation of protein biopharmaceuticals. The AAPS Journal, 8(3), E590–E605.PubMedPubMedCentralGoogle Scholar
  136. 136.
    Phizicky, E. M., & Fields, S. (1995). Protein-protein interactions: Methods for detection and analysis. Microbiological Reviews, 59(1), 94–123.PubMedPubMedCentralGoogle Scholar
  137. 137.
    Sokolowska, I., Woods, A. G., Gawinowicz, M. A., Roy, U., & Darie, C. C. (2012). Identification of potential tumor differentiation factor (TDF) receptor from steroid-responsive and steroid-resistant breast cancer cells. The Journal of Biological Chemistry, 287(3), 1719–1733.PubMedGoogle Scholar
  138. 138.
    Ngounou Wetie, A. G., Sokolowska, I., Woods, A. G., Roy, U., Loo, J. A., & Darie, C. C. (2012). Investigation of stable and transient protein-protein interactions: Past, present, and future. Proteomics, 13(3–4), 538–557.Google Scholar
  139. 139.
    Sokolowska, I., Woods, A. G., Gawinowicz, M. A., Roy, U., & Darie, C. C. (2012). Identification of a potential tumor differentiation factor receptor candidate in prostate cancer cells. The FEBS Journal, 279(14), 2579–2594.PubMedGoogle Scholar
  140. 140.
    Chautard, E., Fatoux-Ardore, M., Ballut, L., Thierry-Mieg, N., & Ricard-Blum, S. (2011). MatrixDB, the extracellular matrix interaction database. Nucleic Acids Research, 39(Database issue), D235–D240.PubMedGoogle Scholar
  141. 141.
    Pflieger, D., Gonnet, F., de la Fuente van Bentem, S., Hirt, H., & de la Fuente, A. (2011). Linking the proteins--elucidation of proteome-scale networks using mass spectrometry. Mass Spectrometry Reviews, 30(2), 268–297.PubMedGoogle Scholar
  142. 142.
    Suter, B., Kittanakom, S., & Stagljar, I. (2008). Two-hybrid technologies in proteomics research. Current Opinion in Biotechnology, 19(4), 316–323.PubMedGoogle Scholar
  143. 143.
    Suter, B., Kittanakom, S., & Stagljar, I. (2008). Interactive proteomics: What lies ahead? BioTechniques, 44(5), 681–691.PubMedGoogle Scholar
  144. 144.
    Krause, F. (2006). Detection and analysis of protein-protein interactions in organellar and prokaryotic proteomes by native gel electrophoresis: (Membrane) protein complexes and supercomplexes. Electrophoresis, 27(13), 2759–2781.PubMedGoogle Scholar
  145. 145.
    Sokolova, L., Wittig, I., Barth, H. D., Schagger, H., Brutschy, B., & Brandt, U. (2010). Laser-induced liquid bead ion desorption-MS of protein complexes from blue-native gels, a sensitive top-down proteomic approach. Proteomics, 10(7), 1401–1407.PubMedGoogle Scholar
  146. 146.
    Darie, C. C., Deinhardt, K., Zhang, G., Cardasis, H. S., Chao, M. V., & Neubert, T. A. (2011). Identifying transient protein-protein interactions in EphB2 signaling by blue native PAGE and mass spectrometry. Proteomics, 11(23), 4514–4528.PubMedPubMedCentralGoogle Scholar
  147. 147.
    Heck, A. J., & Van Den Heuvel, R. H. (2004). Investigation of intact protein complexes by mass spectrometry. Mass Spectrometry Reviews, 23(5), 368–389.PubMedGoogle Scholar
  148. 148.
    Kaddis, C. S., Lomeli, S. H., Yin, S., Berhane, B., Apostol, M. I., Kickhoefer, V. A., et al. (2007). Sizing large proteins and protein complexes by electrospray ionization mass spectrometry and ion mobility. Journal of the American Society for Mass Spectrometry, 18(7), 1206–1216.PubMedPubMedCentralGoogle Scholar
  149. 149.
    Petyuk, V. A., Qian, W. J., Chin, M. H., Wang, H., Livesay, E. A., Monroe, M. E., et al. (2007). Spatial mapping of protein abundances in the mouse brain by voxelation integrated with high-throughput liquid chromatography-mass spectrometry. Genome Research, 17(3), 328–336.PubMedPubMedCentralGoogle Scholar
  150. 150.
    Qian, W. J., Petritis, B. O., Kaushal, A., Finnerty, C. C., Jeschke, M. G., Monroe, M. E., et al. (2010). Plasma proteome response to severe burn injury revealed by 18O-labeled “universal” reference-based quantitative proteomics. Journal of Proteome Research, 9(9), 4779–4789.PubMedPubMedCentralGoogle Scholar
  151. 151.
    Zhong, Y., Hyung, S. J., & Ruotolo, B. T. (2012). Ion mobility-mass spectrometry for structural proteomics. Expert Review of Proteomics, 9(1), 47–58.PubMedPubMedCentralGoogle Scholar
  152. 152.
    Sali, A., Glaeser, R., Earnest, T., & Baumeister, W. (2003). From words to literature in structural proteomics. Nature, 422(6928), 216–225.PubMedGoogle Scholar
  153. 153.
    Jurneczko, E., & Barran, P. E. (2011). How useful is ion mobility mass spectrometry for structural biology? The relationship between protein crystal structures and their collision cross sections in the gas phase. Analyst, 136(1), 20–28.Google Scholar
  154. 154.
    Scarff, C. A., Thalassinos, K., Hilton, G. R., & Scrivens, J. H. (2008). Travelling wave ion mobility mass spectrometry studies of protein structure: Biological significance and comparison with X-ray crystallography and nuclear magnetic resonance spectroscopy measurements. Rapid Communications in Mass Spectrometry, 22(20), 3297–3304.PubMedGoogle Scholar
  155. 155.
    Mirgorodskaya, O. A., Kozmin, Y. P., Titov, M. I., Korner, R., Sonksen, C. P., & Roepstorff, P. (2000). Quantitation of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry using O-18-labeled internal standards. Rapid Communications in Mass Spectrometry, 14(14), 1226–1232.PubMedGoogle Scholar
  156. 156.
    Thelen, M., Winter, D., Braulke, T., & Gieselmann, V. (2017). SILAC-based comparative proteomic analysis of lysosomes from mammalian cells using LC-MS/MS. Methods in Molecular Biology, 1594, 1–18.PubMedGoogle Scholar
  157. 157.
    Walker, M. W., & Lloyd-Evans, E. (2015). A rapid method for the preparation of ultrapure, functional lysosomes using functionalized superparamagnetic iron oxide nanoparticles. Lysosomes and Lysosomal Diseases, 126, 21–43.Google Scholar
  158. 158.
    Arlt, C., Gotze, M., Ihling, C. H., Hage, C., Schafer, M., & Sinz, A. (2016). Integrated workflow for structural proteomics studies based on cross-linking/mass spectrometry with an MS/MS cleavable cross-linker. Analytical Chemistry, 88(16), 7930–7937.PubMedGoogle Scholar
  159. 159.
    Liu, F., Rijkers, D. T. S., Post, H., & Heck, A. J. R. (2015). Proteome-wide profiling of protein assemblies by cross-linking mass spectrometry. Nature Methods, 12(12), 1179.PubMedGoogle Scholar
  160. 160.
    Leitner, A., Joachimiak, L. A., Unverdorben, P., Walzthoeni, T., Frydman, J., Forster, F., et al. (2014). Chemical cross-linking/mass spectrometry targeting acidic residues in proteins and protein complexes. Proceedings of the National Academy of Sciences of the United States of America, 111(26), 9455–9460.PubMedPubMedCentralGoogle Scholar
  161. 161.
    Kaake, R. M., Wang, X. R., Burke, A., Yu, C., Kandur, W., Yang, Y. Y., et al. (2014). A new in vivo cross-linking mass spectrometry platform to define protein-protein interactions in living cells. Molecular & Cellular Proteomics, 13(12), 3533–3543.Google Scholar
  162. 162.
    Norris, J. L., & Caprioli, R. M. (2013). Imaging mass spectrometry: A new tool for pathology in a molecular age. Proteomics Clinical Applications, 7(11–12), 733–738.PubMedPubMedCentralGoogle Scholar
  163. 163.
    Takats, Z., Wiseman, J. M., Gologan, B., & Cooks, R. G. (2004). Method and system for desorption electropsray ionization. Chicago, IL: P.R. Foundation.Google Scholar
  164. 164.
    Takats, Z., Wiseman, J. M., Gologan, B., & Cooks, R. G. (2004). Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science, 306(5695), 471–473.PubMedGoogle Scholar
  165. 165.
    Aerni, H. R., Cornett, D. S., & Caprioli, R. M. (2006). Automated acoustic matrix deposition for MALDI sample preparation. Analytical Chemistry, 78(3), 827–834.PubMedGoogle Scholar
  166. 166.
    Garrett, T. J., Prieto-Conaway, M. C., Kovtoun, V., Bui, H., Izgarian, N., Stafford, G., et al. (2007). Imaging of small molecules in tissue sections with a new intermediate-pressure MALDI linear ion trap mass spectrometer. International Journal of Mass Spectrometry, 260(2–3), 166–176.Google Scholar
  167. 167.
    Jurchen, J. C., Rubakhin, S. S., & Sweedler, J. V. (2005). MALDI-MS imaging of features smaller than the size of the laser beam. Journal of the American Society for Mass Spectrometry, 16(10), 1654–1659.PubMedGoogle Scholar
  168. 168.
    Stoeckli, M., Staab, D., Wetzel, M., & Brechbuehl, M. (2014). iMatrixSpray: A free and open source sample preparation device for mass spectrometric imaging. Chimia, 68(3), 146–149.PubMedGoogle Scholar
  169. 169.
    Friesen, W. L., Schultz, B. J., Destino, J. F., Alivio, T. E. G., Steet, J. R., Banerjee, S., et al. (2015). Two-dimensional graphene as a matrix for MALDI imaging mass spectrometry. Journal of the American Society for Mass Spectrometry, 26(11), 1963–1966.PubMedPubMedCentralGoogle Scholar
  170. 170.
    Heijs, B., Tolner, E. A., Bovee, J. V. M. G., van den Maagdenberg, A. M. J. M., & McDonnell, L. A. (2015). Brain region-specific dynamics of on-tissue protein digestion using MALDI mass spectrometry imaging. Journal of Proteome Research, 14(12), 5348–5354.PubMedGoogle Scholar
  171. 171.
    Quiason, C. M., & Shahidi-Latham, S. K. (2015). Imaging MALDI MS of dosed brain tissues utilizing an alternative Analyte pre-extraction approach. Journal of the American Society for Mass Spectrometry, 26(6), 967–973.PubMedGoogle Scholar
  172. 172.
    Tucker, L. H., Conde-Gonzalez, A., Cobice, D., Hamm, G. R., Goodwin, R. J. A., Campbell, C. J., et al. (2018). MALDI matrix application utilizing a modified 3D printer for accessible high resolution mass spectrometry imaging. Analytical Chemistry, 90(15), 8742–8749.PubMedGoogle Scholar
  173. 173.
    Li, S. L., Zhang, Y. Y., Liu, J. A., Han, J. J., Guan, M., Yang, H., et al. (2016). Electrospray deposition device used to precisely control the matrix crystal to improve the performance of MALDI MSI. Scientific Reports, 6, 37903.PubMedPubMedCentralGoogle Scholar
  174. 174.
    Chen, J. X., Hu, Y. J., Lu, Q. A., Wang, P. C., & Zhan, H. Q. (2017). Molecular imaging of small molecule drugs in animal tissues using laser desorption postionization mass spectrometry. Analyst, 142(7), 1119–1124.Google Scholar
  175. 175.
    Huang, Y. Y., Ma, Y. F., Hu, H. W., Guo, P. R., Miao, L., Yang, Y. Y., et al. (2017). Rapid and sensitive detection of trace malachite green and its metabolite in aquatic products using molecularly imprinted polymer-coated wooden-tip electrospray ionization mass spectrometry. RSC Advances, 7(82), 52091–52100.Google Scholar
  176. 176.
    Silveira, J. A., Ridgeway, M. E., & Park, M. A. (2014). High resolution trapped ion mobility spectrometery of peptides. Analytical Chemistry, 86(12), 5624–5627.Google Scholar
  177. 177.
    Angel, L. A., Majors, L. T., Dharmaratne, A. C., & Dass, A. (2010). Ion mobility mass spectrometry of Au25 (SCH2CH2Ph) 18 nanoclusters. ACS Nano, 4(8), 4691–4700.PubMedGoogle Scholar
  178. 178.
    Srebalus, C. A., Li, J., Marshall, W. S., & Clemmer, D. E. (1999). Gas-phase separations of electrosprayed peptide libraries. Analytical Chemistry, 71(18), 3918–3927.PubMedGoogle Scholar
  179. 179.
    Park, M. A. (2010). Apparatus and method for parallel flow ion mobility spectrometry combined with mass spectrometry, Google Patents.Google Scholar
  180. 180.
    Park, M. A., Kim, T., Stacey, C., & Berg, C. (2008). Ion guide for mass spectrometers, Google Patents.Google Scholar
  181. 181.
    Michelmann, K., Silveira, J. A., Ridgeway, M. E., & Park, M. A. (2015). Fundamentals of trapped ion mobility spectrometry. Journal of the American Society for Mass Spectrometry, 26(1), 14–24.Google Scholar
  182. 182.
    Silveira, J. A., Michelmann, K., Ridgeway, M. E., & Park, M. A. (2016). Fundamentals of trapped ion mobility spectrometry part II: Fluid dynamics. Journal of the American Society for Mass Spectrometry, 27(4), 585–595.PubMedGoogle Scholar
  183. 183.
    Fernandez-Lima, F. (2016). Trapped ion mobility spectrometry: Past, present and future trends. Cham, Switzerland: Springer.Google Scholar
  184. 184.
    Garabedian, A., Benigni, P., Ramirez, C. E., Baker, E. S., Liu, T., Smith, R. D., et al. (2018). Towards discovery and targeted peptide biomarker detection using nanoESI-TIMS-TOF MS. Journal of the American Society for Mass Spectrometry, 29(5), 817–826.PubMedGoogle Scholar
  185. 185.
    Meier, F., Beck, S., Grassl, N., Lubeck, M., Park, M. A., Raether, O., et al. (2015). Parallel accumulation–serial fragmentation (PASEF): Multiplying sequencing speed and sensitivity by synchronized scans in a trapped ion mobility device. Journal of Proteome Research, 14(12), 5378–5387.PubMedGoogle Scholar
  186. 186.
    Beck, S., Michalski, A., Raether, O., Lubeck, M., Kaspar, S., Goedecke, N., et al. (2015). The impact II, a very high resolution quadrupole time-of-flight instrument for deep shotgun proteomics. Molecular & Cellular Proteomics, 14(7), 2014–2029.Google Scholar
  187. 187.
    Ridgeway, M. E., Silveira, J. A., Meier, J. E., & Park, M. A. (2015). Microheterogeneity within conformational states of ubiquitin revealed by high resolution trapped ion mobility spectrometry. Analyst, 140(20), 6964–6972.PubMedGoogle Scholar
  188. 188.
    Roberts, G. C., & Smith, C. W. (2002). Alternative splicing: Combinatorial output from the genome. Current Opinion in Chemical Biology, 6(3), 375–383.PubMedGoogle Scholar
  189. 189.
    Paulo, J. A., Kadiyala, V., Banks, P. A., Steen, H., & Conwell, D. L. (2012). Mass spectrometry-based proteomics for translational research: A technical overview. The Yale Journal of Biology and Medicine, 85(1), 59–73.PubMedPubMedCentralGoogle Scholar
  190. 190.
    Angel, T. E., Aryal, U. K., Hengel, S. M., Baker, E. S., Kelly, R. T., Robinson, E. W., et al. (2012). Mass spectrometry-based proteomics: Existing capabilities and future directions. Chemical Society Reviews, 41(10), 3912–3928.PubMedPubMedCentralGoogle Scholar
  191. 191.
    Pierce, K. L., Premont, R. T., & Lefkowitz, R. J. (2002). Seven-transmembrane receptors. Nature Reviews. Molecular Cell Biology, 3(9), 639–650.PubMedGoogle Scholar
  192. 192.
    Das, N., Biswas, B., & Khera, R. (2013). Membrane-bound complement regulatory proteins as biomarkers and potential therapeutic targets for SLE. Advances in Experimental Medicine and Biology, 734, 55–81.Google Scholar
  193. 193.
    McMahon, G. (2000). VEGF receptor signaling in tumor angiogenesis. The Oncologist, 5(Suppl 1), 3–10.PubMedGoogle Scholar
  194. 194.
    Zwick, E., Bange, J., & Ullrich, A. (2001). Receptor tyrosine kinase signalling as a target for cancer intervention strategies. Endocrine-Related Cancer, 8(3), 161–173.PubMedGoogle Scholar
  195. 195.
    Whitelegge, J., Halgand, F., Souda, P., & Zabrouskov, V. (2006). Top-down mass spectrometry of integral membrane proteins. Expert Review of Proteomics, 3(6), 585–596.PubMedGoogle Scholar
  196. 196.
    Souda, P., Ryan, C. M., Cramer, W. A., & Whitelegge, J. (2011). Profiling of integral membrane proteins and their post translational modifications using high-resolution mass spectrometry. Methods, 55(4), 330–336.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alisa G. Woods
    • 1
  • Izabela Sokolowska
    • 1
  • Armand G. Ngounou Wetie
    • 1
  • Devika Channaveerappa
    • 1
  • Emmalyn J. Dupree
    • 1
  • Madhuri Jayathirtha
    • 1
  • Roshanak Aslebagh
    • 1
  • Kelly L. Wormwood
    • 1
  • Costel C. Darie
    • 1
    Email author
  1. 1.Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular ScienceClarkson UniversityPotsdamUSA

Personalised recommendations