Orthopedic Patients

  • Russell K. Stewart
  • Steven L. Oreck
  • Lucas Teske
  • Brian R. WatermanEmail author


Isolated or combined musculoskeletal trauma comprises a significant percentage of all injuries in both civilian and military populations. For both groups, the use of personal protective equipment reduces the rate and severity of injuries but also increases the percentage of orthopedic injuries. Long-distance aeromedical evacuation (AE) for these patients presents several challenges. Some fracture stabilization techniques used on the ground, such as free weight traction and military anti-shock trousers (MAST), should not be used during AE. Other methods are appropriate during AE, although circumferential casts that are tight should be split prior to flight. In-flight complications in stable orthopedic patients are relatively rare more than 72 hours after injury or surgery and include fat embolism syndrome, compartment syndrome, and pulmonary venous thromboembolism. However, they can have limb- and life-threatening consequences if not recognized and appropriately treated. Adequate planning and early identification are crucial for improving outcomes for patients who require AE. Whenever possible, long-distance AE for orthopedic patients should be delayed until 72 hours after injury or surgery to minimize the risk of in-flight complications. After microvascular reattachment of a limb or digit, AE should be delayed for at least 7 days.


Bone fractures Orthopedic complications In-flight emergencies Splinting Surgical site infection 


  1. 1.
    Demartines N, Scheidigger D, Harder F. Helikopter und Notarzt an der Unfallstelle. Helv Chir Acta. 1991;58:223–7.PubMedGoogle Scholar
  2. 2.
    Oreck SL. Orthopaedics in the combat zone. Mil Med. 1996;161:458–61.CrossRefGoogle Scholar
  3. 3.
    De Tullio A. Problemi aeromedici nel polifrat-turato. Minerva Med. 1977;68:4101–8.PubMedGoogle Scholar
  4. 4.
    White MS, Chubb RM, Rossing RG, Murphy JE. Results of early aeromedical evacuation of Vietnam casualties. Aerosp Med. 1971;43:780–4.Google Scholar
  5. 5.
    Charbanne JP, Sourd JC. Les evacuations sanitaires aeriennes. Soins. 1984;432:35–41.Google Scholar
  6. 6.
    Evard E. Le transport aerienne de maladies et blesses. Bruxell Med. 1970;50:339–59.Google Scholar
  7. 7.
    Pats B. Le transport aerien sanitaire collectif des blesses de guerre. Cahiers Anesthesiol. 1991;39:337–44.Google Scholar
  8. 8.
    Pensiton-Feliciano H. Aeromedical transport. Del Med J. 1995;67:340–5.Google Scholar
  9. 9.
    Unsworth IP. Gas gangrene and air evacuation. Med J Austr. 1974;1:240–1.Google Scholar
  10. 10.
    Iblher P, Paarmann H, Stuckert K, Werner A, Klotz FK, Eichler W. Interstitial fluid shifts in simulated long-haul flights monitored by a miniature ultrasound device. Aviat Space Environ Med. 2013;84(5):486–90.CrossRefGoogle Scholar
  11. 11.
    Kwiatt ME, Seamon MJ. Fat embolism syndrome. Int J Crit Illn Inj Sci. 2013;3(1):64–8.CrossRefGoogle Scholar
  12. 12.
    Howard JT, Kotwal RS, Santos-Lazada AR, Martin MJ, Stockinger ZT. Reexamination of a battlefield trauma golden hour policy. J Trauma Acute Care Surg. 2018;84(1):11–8.CrossRefGoogle Scholar
  13. 13.
    Epps CH Jr, editor. Complications in orthopedic surgery. 3rd ed. Philadelphia: J.B. Lippincott; 1994.Google Scholar
  14. 14.
    Andersen CA. Preparing patients for aeromedical transport. J Emerg Nurs. 1987;13:229–31.PubMedGoogle Scholar
  15. 15.
    Bowen TE, Bellamy RF, editors. NATO handbook: emergency war surgery. Washington, DC: US Government Printing Office; 1988.Google Scholar
  16. 16.
    Hansen PJ. Air transport of the man who needs everything. Aviat Space Environ Med. 1980;51:725–8.PubMedGoogle Scholar
  17. 17.
    Johnson A Jr. Treatise on aeromedical evacuation: II. Some surgical considerations. Aviat Space Environ Med. 1977;48:550–4.PubMedGoogle Scholar
  18. 18.
    Parsons CJ, Bobechko WP. Aeromedical transport: its hidden problems. Can Med Assoc J. 1982;126:337–44.Google Scholar
  19. 19.
    Schwartz DS. Articulating tactical traction splint use on pulseless forearm fracture. J Spec Oper Med. 2014;14(1):6–8.PubMedGoogle Scholar
  20. 20.
    Weichenthal L, Spano S, Horan B, Miss J. Improvised traction splints: a wilderness medicine tool or hindrance? Wilderness Environ Med. 2012;23(1):61–4.CrossRefGoogle Scholar
  21. 21.
    Rowlands TK, Clasper J. The Thomas splint--a necessary tool in the management of battlefield injuries. J R Army Med Corps. 2003;149(4):291–3.CrossRefGoogle Scholar
  22. 22.
    Streubel PN, Stinner DJ, Obremskey WT. Use of negative-pressure wound therapy in orthopaedic trauma. J Am Acad Orthop Surg. 2012;20(9):564–74.PubMedGoogle Scholar
  23. 23.
    Fang R, Dorlac WC, Flaherty SF, Tuman C, Cain SM, Popey TL, et al. Feasibility of negative pressure wound therapy during intercontinental aeromedical evacuation of combat casualties. J Trauma. 2010;69(Suppl 1):S140–5.CrossRefGoogle Scholar
  24. 24.
    Pollak AN, Powell ET, Fang R, Cooper EO, Ficke JR, Flaherty SF. Use of negative pressure wound therapy during aeromedical evacuation of patients with combat-related blast injuries. J Surg Orthop Adv. 2010;19(1):44–8.PubMedGoogle Scholar
  25. 25.
    Joshi M, Sharma R. Aero-medical Considerations in Casualty Air Evacuation (CASAEVAC). Med J Armed Forces India. 2010;66(1):63–5.CrossRefGoogle Scholar
  26. 26.
    Collinge CA, Attum B, Lebus GF, Tornetta P 3rd, Obremskey W, Ahn J, et al; Orthopaedic Trauma Associationʼs Evidence-based Quality and Value Committee. Acute compartment syndrome: an expert survey of Orthopaedic Trauma Association Members. J Orthop Trauma. 2018;32(5):e181–e184.CrossRefGoogle Scholar
  27. 27.
    Hansen PJ. Safe practice for our aeromedical evacuation patients. Mil Med. 1987;152:281–3.CrossRefGoogle Scholar
  28. 28.
    Matsen FA III. Compartmental syndromes. New York: Grune & Stratton; 1980.CrossRefGoogle Scholar
  29. 29.
    Tian S, Lu Y, Liu J, Zhu Y, Cui Y, Lu J. Comparison of 2 available methods with Bland-Altman analysis for measuring intracompartmental pressure. Am J Emerg Med. 2016;34(9):1765–71.CrossRefGoogle Scholar
  30. 30.
    Yamaguchi S, Viegas SF. Causes of upper extremity compartment syndrome. Hand Clin. 1998;14:365–70.PubMedGoogle Scholar
  31. 31.
    Garlin SR, Mubarak SJ, Evans KL, Hargens AR, Akeson WH. Quantification of intracompartmental pressure and volume under plaster casts. J Bone Joint Surg. 1981;63(3):449–53.CrossRefGoogle Scholar
  32. 32.
    Yang CC, Chang DS, Webb LX. Vacuum-assisted closure for fasciotomy wounds following compartment syndrome of the leg. J Surg Orthop Adv. 2006;15(1):19–23.PubMedGoogle Scholar
  33. 33.
    Giannoudis PV, Tzioupis C, Pape HC. Fat embolism: the reaming controversy. Injury. 2006 Oct;37 Suppl 4:S50-8. Review. Erratum in: Injury. 2007t;38(10):1224.CrossRefGoogle Scholar
  34. 34.
    Miller P, Prahlow JA. Autopsy diagnosis of fat embolism syndrome. Am J Forensic Med Pathol. 2011;32(3):291–9.CrossRefGoogle Scholar
  35. 35.
    Gunal AI, Celiker H, Dogukan A, Ozalp G, Kirciman E, Simsekli H, et al. Early and vigorous fluid resuscitation prevents acute renal failure in the crush victims of catastrophic earthquakes. J Am Soc Nephrol. 2004;15(7):1862–7.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Russell K. Stewart
    • 1
  • Steven L. Oreck
    • 2
  • Lucas Teske
    • 3
  • Brian R. Waterman
    • 3
    Email author
  1. 1.Wake Forest School of MedicineWinston-SalemUSA
  2. 2.CAPT, MC, USN (FMF) (ret.), Department of HistoryUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.Department of Orthopedic SurgeryWake Forest Baptist HealthWinston SalemUSA

Personalised recommendations