Advertisement

Enhancement and De-Noising of OCT Image by Adaptive Wavelet Thresholding Method

  • Sima Sahu
  • Harsh Vikram Singh
  • Basant Kumar
  • Amit Kumar Singh
  • Prabhat Kumar
Chapter

Abstract

This chapter proposed an adaptive wavelet thresholding method for enhancement and de-noising of retinal optical coherence tomography (OCT) image. Speckle noise degrades the OCT image and affects the disease diagnostic utility. OCT image enhancement is required for accurate analysis of inter and intra retinal layers. Enhancement is achieved through histogram mapping called Gaussianization transform. Further wavelet coefficients are modeled statistically to get the signal and noise information for finding the threshold value for weighing the wavelet coefficients. A Cauchy distribution is used to model the wavelet coefficients. An adaptive soft thresholding is used to estimate the true wavelet coefficients. Gaussianization transform widen the intensity range and enhances the OCT image and de-noising performances. Through different performance parameters, it is demonstrated that the proposed method outperforms the state-of-the-art methods. The proposed de-noising method has achieved 4.67% improvement in Peak Signal-to-Noise Ratio (PSNR), 2.61% in Structural Similarity (SSIM), 1.33% in Correlation coefficient (CoC) and 9.4% in Edge Preservation Index (EPI) parameters than the adaptive soft thresholding method, designed without statistical modeling.

Keywords

De-noising Statistical modeling Soft thresholding Performance parameters 

References

  1. 1.
    Sahu, S., Singh, H.V., Kumar, B. and Singh, A.K., Statistical Modeling and Gaussianization Procedure based de-speckling algorithm for Retinal OCT images, Journal of Ambient Intelligence and Humanized Computing (AIHC), an International Journal of Springer. DOI:  https://doi.org/10.1007/s12652-018-0823-2
  2. 2.
    Zaki, F., Wang, Y., Yuan, X. and Liu, X., 2017, June. Adaptive Wavelet Thresholding for Optical Coherence Tomography Image Denoising. In Computational Optical Sensing and Imaging (pp. CTh4B-4). Optical Society of America.Google Scholar
  3. 3.
    Anantrasirichai, N., Nicholson, L., Morgan, J.E., Erchova, I., Mortlock, K., North, R.V., Albon, J. and Achim, A., 2014. Adaptive-weighted bilateral filtering and other pre-processing techniques for optical coherence tomography. Computerized Medical Imaging and Graphics, 38(6), pp.526-539.CrossRefGoogle Scholar
  4. 4.
    Kim, J., Miller, D. T., Kim, E., Oh, S., Oh, J., & Milner, T. E. (2005). Optical Coherence Tomography Speckle Reduction by a Partially Spatially Coherent Source. Journal of Biomedical Optics, 10(6), 064034-064034.Google Scholar
  5. 5.
    Pircher, M., Go, E., Leitgeb, R., Fercher, A. F., & Hitzenberger, C. K. (2003). Speckle reduction in optical coherence tomography by frequency compounding. Journal of Biomedical Optics, 8(3), 565-569.Google Scholar
  6. 6.
    Iftimia, N., Bouma, B. E., & Tearney, G. J. (2003). Speckle reduction in optical coherence tomography by path length encoded angular compounding. Journal of Biomedical Optics, 8(2), 260-263.Google Scholar
  7. 7.
    Ghafaryasl, B., Baart, R., de Boer, J.F., Vermeer, K.A. and van Vliet, L.J., 2017, February. Automatic estimation of retinal nerve fiber bundle orientation in SD-OCT images using a structure-oriented smoothing filter. In Medical Imaging 2017: Image Processing (Vol. 10133, p. 101330C). International Society for Optics and Photonics.Google Scholar
  8. 8.
    Zhang, A., Xi, J., Sun, J. and Li, X., 2017. Pixel-based speckle adjustment for noise reduction in Fourier-domain OCT images. Biomedical optics express, 8(3), pp.1721-1730.CrossRefGoogle Scholar
  9. 9.
    Tang, C., Cao, L., Chen, J. and Zheng, X., 2017. Speckle noise reduction for optical coherence tomography images via non-local weighted group low-rank representation. Laser Physics Letters, 14(5), p.056002.CrossRefGoogle Scholar
  10. 10.
    Esmaeili, M., Dehnavi, A.M., Rabbani, H. and Hajizadeh, F., 2017. Speckle noise reduction in optical coherence tomography using two-dimensional curvelet-based dictionary learning. Journal of medical signals and sensors, 7(2), p.86.Google Scholar
  11. 11.
    Adabi, S., Rashedi, E., Conforto, S., Mehregan, D., Xu, Q. and Nasiriavanaki, M., 2017, February. Speckle reduction of OCT images using an adaptive cluster-based filtering. In Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXI (Vol. 10053, p. 100532X). International Society for Optics and Photonics.Google Scholar
  12. 12.
    Kato, Y., Kuroki, N., Hirose, T. and Numa, M., 2016. Locally weighted averaging for denoising of medical tomographic images. Journal of Signal Processing, 20(4), pp.217-220.CrossRefGoogle Scholar
  13. 13.
    Rajabi, H. and Zirak, A., 2016. Speckle noise reduction and motion artifact correction based on modified statistical parameters estimation in OCT images. Biomedical Physics & Engineering Express, 2(3), p.035012.CrossRefGoogle Scholar
  14. 14.
    Duan, J., Lu, W., Tench, C., Gottlob, I., Proudlock, F., Samani, N.N. and Bai, L., 2016. Denoising optical coherence tomography using second order total generalized variation decomposition. Biomedical Signal Processing and Control, 24, pp.120-127.CrossRefGoogle Scholar
  15. 15.
    Baghaie, A., D’souza, R.M. and Yu, Z., 2016. Application of independent component analysis techniques in speckle noise reduction of retinal OCT images. Optik-International Journal for Light and Electron Optics, 127(15), pp.5783-5791.CrossRefGoogle Scholar
  16. 16.
    Kim, K.S., Park, H.J. and Kang, H.S., 2015. Enhanced optical coherence tomography imaging using a histogram-based denoising algorithm. Optical Engineering, 54(11), p.113110.CrossRefGoogle Scholar
  17. 17.
    Thapa, D., Raahemifar, K. and Lakshminarayanan, V., 2015. Reduction of speckle noise from optical coherence tomography images using multi-frame weighted nuclear norm minimization method. Journal of Modern Optics, 62(21), pp.1856-1864.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Aum, J., Kim, J.H. and Jeong, J., 2015. Effective speckle noise suppression in optical coherence tomography images using nonlocal means denoising filter with double Gaussian anisotropic kernels. Applied Optics, 54(13), pp.D43-D50.CrossRefGoogle Scholar
  19. 19.
    Duan, J., Tench, C., Gottlob, I., Proudlock, F. and Bai, L., 2015. New variational image decomposition model for simultaneously denoising and segmenting optical coherence tomography images. Physics in Medicine & Biology, 60(22), p.8901.CrossRefGoogle Scholar
  20. 20.
    Avanaki, M.R., Marques, M.J., Bradu, A., Hojjatoleslami, A. and Podoleanu, A.G., 2014, March. A new algorithm for speckle reduction of optical coherence tomography images. In Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVIII (Vol. 8934, p. 893437). International Society for Optics and Photonics.Google Scholar
  21. 21.
    Bian, L., Suo, J., Chen, F. and Dai, Q., 2015. Multiframe denoising of high-speed optical coherence tomography data using interframe and intraframe priors. Journal of biomedical optics, 20(3), p.036006.CrossRefGoogle Scholar
  22. 22.
    Gyger, C., Cattin, R., Hasler, P.W. and Maloca, P., 2014. Three-dimensional speckle reduction in optical coherence tomography through structural guided filtering. Optical Engineering, 53(7), p.073105.CrossRefGoogle Scholar
  23. 23.
    Cheng, J., Duan, L., Wong, D.W.K., Akiba, M. and Liu, J., 2014, August. Speckle reduction in optical coherence tomography by matrix completion using bilateral random projection. In Engineering in Medicine and Biology Society (EMBC), 2014 36th annual international conference of the IEEE (pp. 186-189). IEEE.Google Scholar
  24. 24.
    Thapa, D., Raahemifar, K. and Lakshminarayanan, V., 2014, August. A new efficient dictionary and its implementation on retinal images. In Digital Signal Processing (DSP), 2014 19th International Conference on (pp. 841-846). IEEE.Google Scholar
  25. 25.
    Chen, Q., de Sisternes, L., Leng, T. and Rubin, D.L., 2015. Application of improved homogeneity similarity-based denoising in optical coherence tomography retinal images. Journal of digital imaging, 28(3), pp.346-361.CrossRefGoogle Scholar
  26. 26.
    Xu, J., Ou, H., Lam, E.Y., Chui, P.C. and Wong, K.K., 2013. Speckle reduction of retinal optical coherence tomography based on contourlet shrinkage. Optics letters, 38(15), pp.2900-2903.CrossRefGoogle Scholar
  27. 27.
    Guo, Q., Dong, F., Sun, S., Lei, B. and Gao, B.Z., 2013. Image denoising algorithm based on contourlet transform for optical coherence tomography heart tube image. IET image processing, 7(5), pp.442-450.CrossRefGoogle Scholar
  28. 28.
    Luan, F. and Wu, Y., 2013. Application of RPCA in optical coherence tomography for speckle noise reduction. Laser Physics Letters, 10(3), p.035603.CrossRefGoogle Scholar
  29. 29.
    Cao, J., Wang, P., Wu, B., Shi, G., Zhang, Y., Li, X., Zhang, Y. and Liu, Y., 2018. Improved wavelet hierarchical threshold filter method for optical coherence tomography image de-noising. Journal of Innovative Optical Health Sciences, 11(03), p.1850012.CrossRefGoogle Scholar
  30. 30.
    Sahu, S., Singh, H. V., Kumar, B., & Singh, A. K. (2017). De-noising of ultrasound image using Bayesian approached heavy-tailed Cauchy distribution. Multimedia Tools and Applications, 1-18.Google Scholar
  31. 31.
    Sahu, S., Singh, H. V., Kumar, B., & Singh, A. K. A Bayesian Multiresolution Approach for Noise Removal in Medical Magnetic Resonance Images. Journal of Intelligent Systems.Google Scholar
  32. 32.
    Bhuiyan, M. I. H., Ahmad, M. O., & Swamy, M. N. S. (2007). Spatially adaptive wavelet-based method using the Cauchy prior for denoising the SAR images. IEEE Transactions on Circuits and Systems for Video Technology, 17(4), 500-507.Google Scholar
  33. 33.
    Amini, Z., & Rabbani, H. (2016). Statistical modeling of retinal optical coherence tomography. IEEE transactions on medical imaging, 35(6), 1544-1554.Google Scholar
  34. 34.
    Donoho, D. L. (1995). De-noising by soft-thresholding. IEEE transactions on information theory, 41(3), 613-627.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sima Sahu
    • 1
  • Harsh Vikram Singh
    • 2
  • Basant Kumar
    • 3
  • Amit Kumar Singh
    • 4
  • Prabhat Kumar
    • 4
  1. 1.Dr. A. P. J. Abdul Kalam Technical UniversityLucknowIndia
  2. 2.Department of ElectronicsKamla Nehru Institute of Technology (KNIT)SultanpurIndia
  3. 3.Department of ECEMotilal Nehru NIT AllahabadPrayagrajIndia
  4. 4.Department of Computer Science and EngineeringNIT PatnaPatnaIndia

Personalised recommendations