Advertisement

Modelling and System Identification of a Monotube Shock Absorber

  • Piotr Czop
  • Mariusz HetmańczykEmail author
  • Grzegorz Wszołek
  • Jakub Słoniewski
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 934)

Abstract

This paper demonstrates linear and nonlinear system identification methods based on a first-principles monotube shock absorber model. Two models were considered, namely low- and high-content a priori knowledge first-principles models. Operational data collected during testing of a shock absorber on a servo-hydraulic test rig were used in order to validate the proposed system identification methods and evaluate their accuracy. The proposed approach in system identification has potentials for a wide range of engineering applications such as control of active and semi-active suspension system.

Keywords

Shock absorber System identification Nonlinear model First-principles model 

References

  1. 1.
    Bohlin, T.P.: Practical Grey-box Process Identification. Theory and Applications. Springer, London (2006)zbMATHGoogle Scholar
  2. 2.
    Ljung, L.: Approaches to identification of nonlinear systems. In: Proceedings of the 29th Chinese Control Conference, pp. 1–5. IEEE Xplore Digital Library, China (2010)Google Scholar
  3. 3.
    Lang, H.H.: A study of the characteristics of automotive hydraulic dampers at high stroking frequencies. Ph.D. thesis, The University of Michigan, Michigan (1977)Google Scholar
  4. 4.
    Talbott, M., Starkey, J.: An experimentally validated physical model of a high-performance mono-tube damper. In: Proceedings of the 2002 SAE Motorsports Engineering Conference and Exhibition, Indianapolis, pp. 382–402 (2002)Google Scholar
  5. 5.
    Reybrouck, K.: A non linear parametric model of an automotive shock absorber. SAE Technical Paper 940869, Indianapolis (1994)Google Scholar
  6. 6.
    Simms, A., Crolla, D.: The influence of damper properties on vehicle dynamic behaviour. SAE Technical Paper 2002-01-0319, Indianapolis (2002)Google Scholar
  7. 7.
    Liu, Y., Zhang, J., Yu, F., Li, H.: Test and simulation of nonlinear dynamic response for the twin-tube hydraulic shock absorber. SAE Technical Paper 2002-01-0320, Indianapolis (2002)Google Scholar
  8. 8.
    Baracat, D.E.: A proposal for mathematical design of shock absorbers. SAE Technical Paper 931691, Sao Paulo (1993)Google Scholar
  9. 9.
    Duym, S.W.R.: Simulation tools, modelling and identification, for an automotive shock absorber in the context of vehicle dynamics. Int. J. Veh. Mech. Mob. 33(4), 261–285 (2010)Google Scholar
  10. 10.
    Duym, S.W., Reybrouck K.G., Baron, G.V., Stiens, R.: Physical modeling of the hysteretic behaviour of automotive shock absorbers. In: Steering and Suspensions Technology, pp. 125–137. SAE, Warrendale (1997)Google Scholar
  11. 11.
    Duym, S., Stiens, R., Reybrouck, K.: Evaluation of shock absorber models. Veh. Syst. Dyn. 27, 109–127 (1997)CrossRefGoogle Scholar
  12. 12.
    Basso, R.: Design of a single-tube shock absorber with a pre-established characteristic diagram. Int. J. Heavy Veh. Syst. 17, 179–195 (2010)CrossRefGoogle Scholar
  13. 13.
    Boggs, C., Ahmadian, M., Southward, S.: Efficient empirical modelling of a high-performance shock absorber for vehicle dynamics studies. Veh. Syst. Dyn. 48, 481–505 (2010)CrossRefGoogle Scholar
  14. 14.
    Cherng, J.G., Ge, T., Pipis, J., Gazala, R.: Characterization of air-borne noise of shock absorber by using acoustics index method. In: SAE Conference Proceedings: Noise and vibration, p. 342. SAE (1999)Google Scholar
  15. 15.
    Yamauchi, H., Sugahara, T., Mishima M., Noguchi, E.: Theoretical analysis and proposition to reduce self-excited vibration of automotive shock absorber. SAE Paper 2003-01-1471, Michigan (2003)Google Scholar
  16. 16.
    Kruse, A.: Characterizing and reducing structural noises of vehicle shock absorber systems. SAE Technical Paper 2002-01-1234, Michigan (2002)Google Scholar
  17. 17.
    Lee, C.T., Moon, B.Y.: Simulation and experimental validation of vehicle dynamic characteristics for displacement-sensitive shock absorber using fluid-flow modelling. Mech. Syst. Signal Process. 20, 373–388 (2006)CrossRefGoogle Scholar
  18. 18.
    Fukushima, N., Hidaka, K., Iwata, K.: Optimum characteristics of automotive shock absorbers under various driving conditions and road surfaces. Int. J. Veh. Des. 4, 463–472 (1983)Google Scholar
  19. 19.
    Sibielak, M.: Study of flow-induced vibration phenomena in automotive shock absorbers. Solid State Phenom. 248, 204–210 (2016)CrossRefGoogle Scholar
  20. 20.
    Subramanian, S., Surampudi, R., Thomson, K.: Development of a nonlinear shock absorber model for low-frequency NVH applications. SAE Paper 79-84, Michigan (2003)Google Scholar
  21. 21.
    Liu, S.W., Li, G., Hao, L.: Optimization research of vehicle damper matching parameters. In: Proceedings 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC), China, pp. 3284–3289 (2013)Google Scholar
  22. 22.
    Wang, W., Yu, D., Zhou, Z.: In-service parametric modelling a rail vehicle’s axle-box hydraulic damper for high-speed transit problems. Mech. Syst. Signal Process. 62, 517–533 (2015)CrossRefGoogle Scholar
  23. 23.
    Ljung, L.: System Identification: Theory for the User, 2nd edn. Prentice Hall, Upper Saddle River (1999)zbMATHGoogle Scholar
  24. 24.
    Czop, P., Slawik, D.: A high-frequency first-principle model of a shock absorber and servo-hydraulic tester. Mech. Syst. Signal Process. 25, 1937–1955 (2011)CrossRefGoogle Scholar
  25. 25.
    Spencer Jr., B., Dyke, S., Sain, M., Carlson, J.D.: Phenomenological model for magnetorheological dampers. J. Eng. Mech. 123, 230–238 (1997)CrossRefGoogle Scholar
  26. 26.
    Kost, G., Wszołek, G., Czop, P., Jakubowski, D., Wlodarczyk, T.: Parameter estimation of first-principle models formulated using nonlinear ordinary differential equations. Silesian University Publishing House, Gliwice (2013)Google Scholar
  27. 27.
    Ljung, L.: System Identification Toolbox for Use with MATLAB. The MathWorks Inc., Natick (2007)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Piotr Czop
    • 1
  • Mariusz Hetmańczyk
    • 2
    Email author
  • Grzegorz Wszołek
    • 2
  • Jakub Słoniewski
    • 1
  1. 1.AGH University of Science and TechnologyCracowPoland
  2. 2.The Silesian University of TechnologyGliwicePoland

Personalised recommendations