Advertisement

Applications of Composite Piezoelectric Transducers in Innovative Mechatronic Systems

  • Marek PłaczekEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 934)

Abstract

The work is a report of research works concerning applications of non-classical piezoelectric transducers in mechatronic systems for measuring and analysis of vibrations. Composite piezoelectric transducers called Macro Fiber Composite (MFC) are considered. They are used as sensors in proposed application of a system for traffic monitoring and detection of collisions, based on measurements and analysis of vibrations of the road infrastructure elements. The paper presents assumptions of considered mechatronic systems with MFC transducers, results of carried out measurements and their analysis in case of presented applications.

Keywords

Smart materials Piezoelectric materials Vibration Signal analysis Traffic monitoring system 

References

  1. 1.
    Płaczek, M., Buchacz, A., Wróbel, A.: Use of piezoelectric foils as tools for structural health monitoring of freight cars during exploitation. Maint. Reliab. 17(3), 443–449 (2015)Google Scholar
  2. 2.
    Płaczek, M.: Modelling and investigation of a piezo composite actuator application. Int. J. Mater. Product Technol. 50(3/4), 244–258 (2015)CrossRefGoogle Scholar
  3. 3.
    Kovalos, A., Barkanov, E., Gluhihs, S.: Active control of structures using macro-fiber composite (MFC). J. Phys: Conf. Ser. 93(1), 1–7 (2007)Google Scholar
  4. 4.
    Seeley, Ch., Delgado, E., Bellamay, D., Kunzmann, J.: Miniature piezo composite bimorph actuator for elevated temperature operation. In: Proceedings of ASME 2007 International Mechanical Engineering Congress & Exposition, Seattle, Washington, USA, pp. 405–415 (2007)Google Scholar
  5. 5.
    Azpilicueta, L., Falcone, F., Astrain, J., et al.: Analysis of topological impact on wireless channel performance of intelligent street lighting system. Radioengineering 23(1), 412–420 (2014)Google Scholar
  6. 6.
    Coifman, B., Beymer, D., McLauchlan, P., Malik, J.: A real-time computer vision system for vehicle tracking and traffic surveillance. Transp. Res. Part C: Emerg. Technol. 6(4), 271–288 (1998)CrossRefGoogle Scholar
  7. 7.
    Elejoste, P., Angulo, I., Perallos, A., et al.: An easy to deploy street light control system based on wireless communication and LED technology. Sensors 13(5), 6492–6523 (2013)CrossRefGoogle Scholar
  8. 8.
    Hejun, W., Changyun, M.: Design of intelligent traffic light control system based on traffic flow. In: 2010 International Conference on Computer and Communication Technologies in Agriculture Engineering, vol. 3, pp. 368–371 (2010)Google Scholar
  9. 9.
    Manikandan, G., Srinivasan, S.: Traffic control by bluetooth enabled mobile phone. Int. J. Comput. Commun. Eng. 1(1), 66–69 (2012)CrossRefGoogle Scholar
  10. 10.
    Richu, S.A., Starbell, R.N.: Energy efficient intelligent street lighting system using ZIGBEE and sensors. Int. J. Eng. Adv. Technol. 3(4), 41–44 (2014)Google Scholar
  11. 11.
    Buchacz, A., Galeziowski, D.: Synthesis as a designing of mechatronic vibrating mixed systems. J. VibroEng. 14(2), 553–558 (2012)Google Scholar
  12. 12.
    Bialas, K.: Mechanical and electrical elements in reduction of vibrations. J. VibroEng. 14(1), 123–128 (2012)Google Scholar
  13. 13.
    Dymarek, A., Dzitkowski, T.: Passive reduction of system vibrations to the desired amplitude value. J. VibroEng. 15(3), 1354–1364 (2013)Google Scholar
  14. 14.
    Buchacz, A., Płaczek, M.: Selection of parameters of external electric circuit for control of dynamic flexibility of a mechatronic system. Solid State Phenom. 164(1), 323–326 (2010)CrossRefGoogle Scholar
  15. 15.
    Buchacz, A., Płaczek, M.: The analysis of a composite beam with piezoelectric actuator based on the approximate method. J. VibroEng. 14(1), 111–116 (2012)Google Scholar
  16. 16.
    Buchacz, A., Płaczek, M., Wróbel, A.: Control of characteristics of mechatronic systems using piezoelectric materials. J. Theor. Appl. Mech. 51(1), 225–234 (2013)Google Scholar
  17. 17.
    Buchacz, A., Płaczek, M., Wróbel, A.: Modelling of passive vibration damping using piezoelectric transducers – the mathematical model. Eksploatacja i Niezawodnosc – Maint. Reliab. 16(2), 301–306 (2014)Google Scholar
  18. 18.
    Buchacz, A., Płaczek, M., Wróbel, A.: Modelling and analysis of systems with cylindrical piezoelectric transducers. Mechanics 20(1), 87–91 (2014). ISSN 1392-1207Google Scholar
  19. 19.
    Buchacz, A., Płaczek, M., Wróbel, A.: Mathematical algorithm for analysis of piezoelectric stacks with structural damping. Solid State Phenom. 220–221(1), 385–390 (2015)CrossRefGoogle Scholar
  20. 20.
    Płaczek, M.: Dynamic characteristics of a piezoelectric transducer with structural damping. Solid State Phenom. Mechatron. Syst. Mater. IV 198(1), 633–638 (2013)CrossRefGoogle Scholar
  21. 21.
    Wróbel, A.: Kelvin Voigt’s model of single piezoelectric plate. J. VibroEng. 14(2), 534–537 (2012)Google Scholar
  22. 22.
    Zolkiewski, S.: Testing composite materials connected in bolt joints. J. VibroEng. 13(4), 817–822 (2011)Google Scholar
  23. 23.
    Patent Cooperation Treaty (PTC), publication number WO 2010/131126 AI: Road barrier structure with an integrated system for energy generation and detection and classification of collisions, World Intellectual Property Organization, 18 November 2010Google Scholar
  24. 24.
    European Patent Application EP 1 167 629 A2: Highway crash barrier monitoring system, European Patent Office, 02 February 2002Google Scholar
  25. 25.
    Song, G., Olmi, C., Gu, H.: An overheight vehicle–bridge collision monitoring system using piezoelectric transducers. Smart Mater. Struct. 16(2), 462–468 (2007)CrossRefGoogle Scholar
  26. 26.
    Chłus, K., Krasoń, W.: Simulation of the effect of static and dynamic loads on the strength of the railway platforms. Article Proprietary X Engineering Forum ProCAx, Sosnowiec/Siewierz. 6–9 October 2011. (In Polish)Google Scholar
  27. 27.
    Grebowski, K., Zielińska, M.: Modeling of dynamic interactions of Pendolino train type on structures of historic railway bridges in Poland. Constr. Overview 1(1), 27–32 (2015). ISSN 0033-2038. (In Polish)Google Scholar
  28. 28.
    Herwig, A., Bruhwiler, E.: In-situ dynamic behaviour of a railway bridge girder under fatigue causing traffic loading. In: Proceedings of the 11th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP11, Zurich, Switzerland, 1–4 August 2011, vol. 1, no. 1, pp. 389–395 (2011)Google Scholar
  29. 29.
    Oleszak, P., Cieśla, J., Szaniec, W.: Study of the effects of side impacts on railway viaduct lying on the arc. Constr. Architect. 12(2), 47–54 (2013). ISSN 1800-0665. (In Polish)Google Scholar
  30. 30.
    Stypuła, K.: Selected problems of surface building protection against vibrations generated by underground communication. Min. Geoeng. 3(1), 351–362 (2009). ISSN 1732-6702. (In Polish)Google Scholar
  31. 31.
    Salamak, M., Łaziński, P., Pradelok, S., Bętkowski, P.: Acceptance testing of railway bridges under dynamic loading test - requirements and practice, design, construction and maintenance of rail transport infrastructure. In: INFRASZYN 2014, Zakopane, 9–11 April 2014, pp. 218–227 (2014). (In Polish)Google Scholar
  32. 32.
    Sekuła, K., Kołakowski, P., Świercz, A.: System for the monitoring of loads and technical state of truss bridges in the railway. In: Condition Monitoring and Evaluation of Technical Construction and Its Vitality, Seminar MONIT, Warsaw, 19 November 2010. (In Polish)Google Scholar
  33. 33.
    Mehrpouya, M., Ahmadian, H.: Estimation of applied forces on railway vehicle wheelsets from measured vehicle responses. Int. J. Veh. Struct. Syst. 1(4), 104–110 (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Engineering Processes Automation and Integrated Manufacturing SystemsSilesian University of TechnologyGliwicePoland

Personalised recommendations