Advertisement

Application of Surface Electromyographic Signals for Electric Rotor Control

  • Agnieszka KonopelskaEmail author
  • Mariola Jureczko
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 934)

Abstract

The aim of this study was to develop an algorithm to control an electric rotor using surface electromyographic (sEMG) signals. The paper presents a design of an automated mechatronic robot for rehabilitation of both upper and lower limbs. Due to the implemented controller it is possible to program exercises in full spectrum and with various loads.

Keywords

Surface electromyography (sEMG) Rehabilitation Mechatronics system 

References

  1. 1.
    Zembaty, A.: Kinezyterapia. Tom 1. Zarys podstaw teoretycznych I diagnostyka kinezyterapii. Wydawnictwo KASPER (2015)Google Scholar
  2. 2.
    Kiwerski, J. (ed.): Rehabilitacja Medyczna. Wydawnictwo Lekarskie PZWL, Warszawa (2005)Google Scholar
  3. 3.
    Paśniczek, R.: Bioinżynieria w rehabilitacji narządu ruchu. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa (2014)Google Scholar
  4. 4.
    Kruse, R., Gebhardt, J., Klawonn, F.: Foundations of Fuzzy Systems. Wiley, Hoboken (1994)zbMATHGoogle Scholar
  5. 5.
    del Boca, A., Park, D.C.: Myoelectric signal recognition using fuzzy clustering and artificial neural networks in real time. In: IEEE International Conference on Neural Networks and IEEE World Congress on Computational Intelligence, vol. 5, pp. 3098–3103 (1994)Google Scholar
  6. 6.
    Popkorn, S.: First Steps in Modal Logic. Cambridge University Press, Cambridge (1994)CrossRefGoogle Scholar
  7. 7.
    Erdmann, W.S.: Inżynieria rehabilitacji ruchowej. Wydawnictwo Politechniki Gdańskiej (2016)Google Scholar
  8. 8.
    Kazuo, K., Yoshiaki, H.: An EMG-based control for an upper-limb power-assist exoskeleton robot. IEEE Trans. Syst. Man Cybern. – Part B: Cybern. 42(4), 1064–1071 (2012)CrossRefGoogle Scholar
  9. 9.
    Ahmad, I., Ansari, F., Dey, U.K.: A review of EMG recording technique. Int. J. Eng. Sci. Technol. 4(2), 530–539 (2012)Google Scholar
  10. 10.
    Wege, A., Zimmermann, A.: Electromyography (EMG) sensor based control for a hand exoskeleton. In: Proceedings of the 2007 IEEE International Conference on Robotics and Bio-mimetics, 15–18 December 2007, Sanya, China, pp. 1470–1475 (2007)Google Scholar
  11. 11.
    Roy, S.H., Luca, G.D., Cheng, M.S., Johansson, A., Gilmore, L.D., Luca, C.J.D.: Electro-mechanical stability of surface EMG sensors. J. Med. Bio. Eng. Comput. 45, 447–457 (2007)CrossRefGoogle Scholar
  12. 12.
    Jain, R.K., Datta, S., Majumder, S.: Design and control of an EMG driven IPMC based artificial muscle finger. In: Naik, G.N. (ed.) Computational Intelligence in Electromyography Analysis - A Perspective on Current Applications and Future Challenges. InTech.  https://doi.org/10.5772/48814
  13. 13.
    Lippold, O.C.J.: The relation between integrated action potentials in a human muscle and its isometric tension. J. Physiol. 117, 492–499 (1952)CrossRefGoogle Scholar
  14. 14.
    Milner-Brown, S.R.B.: The relation between the surface electromyogram and force. J. Physiol. (London) 246, 549–569 (1975)CrossRefGoogle Scholar
  15. 15.
    Woods, J.J., Bigland-Ritchie, B.: Linear and non-linear surface EMG/force relationships in human muscle. J. Phys. Med. 6, 287–299 (1982)Google Scholar
  16. 16.
    Komi, P.V., Buskirk, E.R.: Reproducibility of electromyographic measurements with inserted wire electrodes and surface electrodes. Electromyogr. Clin. Neurophysiol. 10, 357–367 (1970)Google Scholar
  17. 17.
    Roberts, T.J., Gabaldón, A.M.: Interpreting muscle function from EMG: lessons learned from direct measurements of muscle force. Integr. Comp. Biol. 48(2), 312–320 (2008).  https://doi.org/10.1093/icb/icn056CrossRefGoogle Scholar
  18. 18.
    Hermens, H.J., et al.: European Recommendations for Surface ElectroMyoGraphy. Results of the SENIAM Project. ISBN 90-75452-15-2. http://seniam.org/sensor_location.htm
  19. 19.
    Raez, M.B.I., Hussain, M.S., Mohd-Yasin, F.: Techniques of EMG signal analysis: detection, processing, classification and applications. J. Biol. Proc. Online 8, 11–35 (2006)CrossRefGoogle Scholar
  20. 20.
    Merlo, A., Farina, D.A.: Fast and reliable technique for muscle activity detection from surface EMG signals. IEEE Trans. Biomed. Eng. 50(3), 316–323 (2003).  https://doi.org/10.1109/TBME.2003.808829CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Mechanical Engineering, Institute of Applied and Theoretical MechanicsSilesian University of TechnologyGliwicePoland

Personalised recommendations