Advertisement

Concept of Sensor for Mining Machines Powered by Pressure Changes

  • Dariusz JasiulekEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 934)

Abstract

In mining plants there are the machines and technological lines, in which use of additional sensors e.g. temperature or pressure ones, is recommended, but due to high temperature in workings it is difficult. Regulations resulting from the ATEX Directive limit a possibility of modernization of the existing systems for control of machines and use of additional measuring sensors with wires. A concept of electricity generator, designed to power the wireless sensors, which uses the pressure changes in a hydraulic system of machines, is presented. Presented generator is planned to be used in wireless temperature or pressure sensors intended to be used in mobile mining machines equipped with hydraulic systems.

Keywords

Energy harvesting Piezoelectric transducer Hydraulic systems Pressure sensor Self-powered sensor 

References

  1. 1.
    Beeby, S.P., Tudor, M.J., White, N.M.: Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17(12), 175–195 (2006)CrossRefGoogle Scholar
  2. 2.
    Brunelli, D., Passerone, R., Rizzon, L., Rossi, M., Sartori, D.: Self-powered WSN for distributed data center monitoring. Sensors 16(1), 57 (2016)CrossRefGoogle Scholar
  3. 3.
    Buchacz, A., Płaczek, M., Wróbel, A.: Control of characteristics of mechatronic systems using piezoelectric materials. J. Theoret. Appl. Mech. 51(1), 225–234 (2013)Google Scholar
  4. 4.
    Cunefare, K.A., Skow, E.A., Erturk, A., Savor, J., Verma, N., Cacan, M.R.: Energy harvesting from hydraulic pressure fluctuations. Smart Mater. Struct. 22, 025036 (2013). (10 pp)CrossRefGoogle Scholar
  5. 5.
    Catalogue card of Elgór-Hansen EH-PressCater system. www.elgorhansen.com
  6. 6.
    Erturk, A., Inman, D.J.: Piezoelectric Energy Harvesting. Wiley, Hoboken (2011)CrossRefGoogle Scholar
  7. 7.
    Erturk, A., Hoffmann, J., Inman, D.J.: A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl. Phys. Lett. 94, 254102 (2009)CrossRefGoogle Scholar
  8. 8.
    Gilbert, J.M., Balouchi, F.: Comparison of energy harvesting systems for wireless sensor networks. Int. J. Autom. Comput. 5(4), 334–347 (2008)CrossRefGoogle Scholar
  9. 9.
    Grzybek, D.: Piezoelectric generators: materials and structures. Pomiary Automatyka Robotyka, October 2013Google Scholar
  10. 10.
    Jasiulek, D.: The use of lost energy for supplying the dispersed network of sensors. Problemy Eksploatacji – Maint. Prob. 97(2), 51–59 (2015)Google Scholar
  11. 11.
    Jasiulek, D.: Testing the piezoelectric energy harvester’s deflection on the amount of generated energy. In: Awrejcewicz, J., Kaliński, K.J., Kaliczyńska, M., Szewczyk, R. (eds.) Mechatronics: Ideas, Challenges, Solutions and Applications, pp. 95–112 (2016)Google Scholar
  12. 12.
    Jasiulek, D.: Alternative power sources for sensors used in mining. Own work ITG KOMAG (not published)Google Scholar
  13. 13.
    Latalski, J.: Modelling of macro fibre composite piezoelectric active elements in ABAQUS system. Eksploatacja i Niezawodnosc – Maint. Reliab. 4, 72–78 (2011)Google Scholar
  14. 14.
    Radkowski, S., Lubikowski, K., Piątak, A.: Vibration energy harvesting in the transportation system: a review. Diagnostyka – Appl. Struct. Health Usage Cond. Monit. 4(64), 39–44 (2012)Google Scholar
  15. 15.
    Sadeghioon, A.M., Metje, N., Chapma, D.N., Anthony, C.J.: SmartPipes: smart wireless sensor networks for leak detection in water pipelines. J. Sens. Actuator Netw. 3(1), 64–78 (2014)CrossRefGoogle Scholar
  16. 16.
    Sardini, E., Serpelloni, M.: Passive and self-powered autonomous sensors for remote measurements. Sensors 9, 943–960 (2009)CrossRefGoogle Scholar
  17. 17.
    Sardini, E., Serpelloni, M.: Self-powered wireless sensor for air temperature and velocity measurements with energy harvesting capability. IEEE Trans. Instrum. Meas. 60(5), 1838–1844 (2011)CrossRefGoogle Scholar
  18. 18.
    Sazonov, E., Li, H., Curry, D., Pillay, P.: Self-powered sensors for monitoring of highway bridges. IEEE Sens. J. 9(11), 1422–1429 (2009)CrossRefGoogle Scholar
  19. 19.
    Shena, H., Qiu, J., Balsi, M.: Vibration damping as a result of piezoelectric energy harvesting. Sens. Actuators A 169, 178–186 (2011)CrossRefGoogle Scholar
  20. 20.
    Sodano, H.A., Inman, D.J.: A review of power harvesting from vibration using piezoelectric materials. Shock Vib. Dig. 36, 197–206 (2004)CrossRefGoogle Scholar
  21. 21.
    Stankiewicz, K.: The method of swarm self-organization in monitoring and control of equipment in underground mining. Maszyny Górnicze 4, 10–13 (2011)Google Scholar
  22. 22.
    Stankiewicz, K.: The concept of the simulation environment to evaluate the self-organization of routing in the sensor network. Maszyny Górnicze 2, 3–8 (2015)Google Scholar
  23. 23.
    Świder, J., Woszczyński, M.: Use of the system for energy recuperation and control in diesel machines. Mach. Dyn. Res. 38(1), 73–79 (2014)Google Scholar
  24. 24.
    Zolkiewski, S.: Vibrations of beams with a variable cross-section fixed on rotational rigid disks. Latin Am. J. Solids Struct. 10, 39–57 (2013)CrossRefGoogle Scholar
  25. 25.
    Zolkiewski, S.: Damped vibrations problem of beams fixed on the rotational disk. Int. J. Bifurcat. Chaos 21(10), 3033–3041 (2011)CrossRefGoogle Scholar
  26. 26.
    Chen, X., Yang, T., Wang, W., Yao, X.: Vibration energy harvesting with a clamped piezoelectric circular diaphragm. Ceram. Int. 38, S271–S274 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.KOMAG Institute of Mining TechnologyGliwicePoland

Personalised recommendations