Advertisement

Concept of Coupling the Rehabilitation Treadmill with Foot Pressure Sensors

  • Sławomir DudaEmail author
  • Grzegorz Gembalczyk
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 934)

Abstract

The main aims presented in the work constitute conceptual solutions of treadmill control systems with foot pressure sensors feedback. The article also contains results of further experimental studies regarding the device.

Keywords

Mechatronic device Gait rehabilitation Rehabilitation treadmill Real-time operations 

References

  1. 1.
    Feigin, V.L., Roth, G.A., Naghavi, M., Parmar, P., Krishnamurthi, R., Chugh, S., Mensah, G.A., Norrving, B., Shiue, I., Ng, M., Estep, K., Cercy, K., Murray, C.J.L., Forouzanfar, M.H.: Global burden of stroke and risk factors in 188 countries, during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet Neurol. 15(9), 913–924 (2016)CrossRefGoogle Scholar
  2. 2.
    Lisabeth, L.D., Baek, J., Morgenstern, L.B., Zahuranec, D.B., Case, E., Skolarus, L.E.: Prognosis of midlife stroke. J. Stroke Cerebrovasc. Dis. 27(5), 1153–1159 (2018)CrossRefGoogle Scholar
  3. 3.
    Koceska, N., Koceski, S.: Review: robot devices for gait rehabilitation. Int. J. Comput. Appl. 62(13), 1–8 (2013)Google Scholar
  4. 4.
    Sommers, J., Wieferink, D.C., Dongelmans, D.A., Nollet, F., Engelbert, R.H., van der Schaaf, M.: Body weight-supported bedside treadmill training facilitates ambulation in ICU patients: an interventional proof of concept study. J. Crit. Care 41, 150–155 (2017)CrossRefGoogle Scholar
  5. 5.
    BIODEX. http://www.biodex.com. Accessed 28 Dec 2017
  6. 6.
    Duda, S., Gąsiorek, D., Gembalczyk, G., Kciuk, S., Mężyk, A.: Mechatronic device for locomotor training. Acta Mechanica et Automatica 10(4), 310–315 (2016)CrossRefGoogle Scholar
  7. 7.
    Kopetz, H.: Real-Time Systems Design Principles for Distributed Embedded Applications. Springer, Wien (2011)zbMATHGoogle Scholar
  8. 8.
    Duda, S., Gembalczyk, G., Jurkojć, J., Kciuk, S., Michnik, R.: Mechatronic solution of components cooperation in the device for gait reeducation. In: Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015, pp. 799–805. International Center for Numerical Methods in Engineering (CIMNE), Barcelona (2015)Google Scholar
  9. 9.
    Paszkowski, W., Loska, A.: The use of neural network model in the assessment of annoyance of the industrial noise sources. In: Burduk, A., Mazurkiewicz, D. (eds.) Intelligent Systems in Production Engineering and Maintenance – ISPEM 2017. Advances in Intelligent Systems and Computing, vol. 637, pp. 428–439. Springer, Cham (2017)CrossRefGoogle Scholar
  10. 10.
    Kciuk, S., Duda, S., Mężyk, A., Świtoński, E., Klarecki, K.: Tuning the dynamic characteristics of tracked vehicles suspension using controllable fluid dampers. In: Nawrat, A. (ed.) Innovative Control Systems for Tracked Vehicle Platforms, pp. 243–258. Springer, Cham (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Silesian University of TechnologyGliwicePoland

Personalised recommendations