Advertisement

Environmental Sustainability and Climate Change

  • Alastair Fraser
Chapter
Part of the Sustainable Development Goals Series book series (SDGS)

Abstract

In this chapter, the environmental benefits of forests for minimising the impact of soil erosion, mitigating floods and droughts and coastal protection are discussed. The linkage between forests and climate change can be both negative through emissions and positive through sequestration of carbon dioxide. At present forests are net contributors to emissions and further loss of forest will both increase overall emissions and reduce the capacity of forests to mitigate emissions from other sources. Agro-ecological zones are likely to change due to global warming which may mean forests replacing agriculture in some areas and vice versa. The current low market price of carbon limits the role that forests can play due to the high transaction costs of implementing CDM and REDD+ initiatives.

Keywords

Soil erosion Floods Climate change CO2 emissions Carbon pricing 

References

  1. Asdak, C., Jarvis, P. G., van Gardingen, P., & Fraser, A. (1998). Rainfall interception loss in unlogged and logged forest areas of Central Kalimantan, Indonesia. Journal of Hydrology, 206, 237–244.CrossRefGoogle Scholar
  2. Atkinson, A., V. Siegal, E. Pakhonov and P. Rothery, (2004), Long-term decline in krill stocks and increase in scalps within the Southern Ocean. Nature, Nov.4. 432(7013): 100–3.CrossRefGoogle Scholar
  3. Azevedo, C. P., Sanquetta, C. R., Natalino, J., Silva, M., Machado, S. A., Souza, O. R., et al. (2008). Simulation of forest management strategies.In the Amazon using the SYMFOR model. Acta Amazonica, 38(1). Manaus.Google Scholar
  4. Cao, S. G. A., Sanchez-Azofafa, G. A., Duran, S. M., & Calvo-Rodriguez, S. (2016). Estimation of above ground net primary productivity in secondary tropical dry forests using the Carnegie-Ames-Stanford-approach (CASA) model. Environmental Research Letters, 11, 075004.CrossRefGoogle Scholar
  5. Church, J. A., & White, N. J. (2006). A 20th century acceleration in global sea-level rise. Geophysical Research Letters, 33, L01602.  https://doi.org/10.1029/2005GL024826CrossRefGoogle Scholar
  6. Clark, D. B., Hurtado, J., & Saatchi, S. S. (2015). Tropical rainforest structure, tree growth and dynamics along a 2.700 metre elevational transect in Costa Rica. PLoS One, 10(4), e0122905.CrossRefGoogle Scholar
  7. Dai, A., Trenberth, K. E., & Qian, T. (2004). A global data set of Palmer drought severity index for 1870-2002: Relationship with soil moisture and effect of surface warming. Journal of Hydrometeorology, 5, 1117–1130.CrossRefGoogle Scholar
  8. Delucia, E. H. J., Hamilton, G., Nandu, S. L., Thomas, R. B., Andrews, J. A., Finzi, A., et al. (1999). Net primary production of a forest ecosystem with experimental CO2 enrichment. Science, 284(5417), 1177–1179.CrossRefGoogle Scholar
  9. Dong, S. X., Davies, S. J., Ashton, P. S., Banyaravejchewin, S., Supardi, N. N. N., Kasim, A. R., et al. (2015). Variability in solar radiation and temperature explains observed patterns and trends in tree growth rate across four ötropical forests. Proceedings of the Royal Society B, 279(1744), 3923–3931.  https://doi.org/10.1098/rspb.2012.1124CrossRefGoogle Scholar
  10. Ernsting, A, & Rughani, D. (2007). Reduced emissions from deforestation: Can carbon trading save our ecosystems? www.biofuelwatch.org.uk
  11. Federico, S., Tubella, F. N., Salvatore, M., Jacobs, H., & Schmudhuber, J. (2015). New estimates of CO2 forest emissions and removals 1990 – 2015. Forest Ecology and Management, 352, 89–98.CrossRefGoogle Scholar
  12. Field, C. B., & Kaduk, J. (2004). The carbon balance of old-growth forest: Building across approaches. Ecosystems, 7, 525–533.CrossRefGoogle Scholar
  13. Fraser, A. I., & Gardiner, J. B. H. (1967). Rooting and stability in Sitka spruce (Forestry Commission Bulletin No. 40). London: H.M.S.O.Google Scholar
  14. Fraser, A. I., & Jewell, N. (2008). The impact of loss of forest cover on river system hydrology and human settlements. Manila: Report to Asian Development Bank.Google Scholar
  15. Gardner, T. A., Cote, I. M., Gill, J. A., Grant, A., & Watkinson, A. R. (2005). Hurricanes and Caribbean coral reefs: Impacts, recovery patterns and role in long-term decline. Ecology, 86, 174–184.CrossRefGoogle Scholar
  16. GOFC-GOLD. (2014). A sourcebook of methods and procedures for monitoring and reporting anthropogenic greenhouse gas emissions and removals associated with deforestation, gains and losses of carbon stocks in forests remaining, forests and forestation. Wageningen: GOFC-GOLD.Google Scholar
  17. Gregg, W. W., Conkright, M. E., Ginoux, P., O’Reilly, J. E., & Casey, N. W. (2003). Ocean primary production and climate: Global decadal changes. Geophysical Research Letters, 30, 1809.  https://doi.org/10.1029/2003GL016889CrossRefGoogle Scholar
  18. Hoegh-Guldberg, O. (1999). Climate change, coral bleaching and the future of the world’s coral reefs. Marine and Freshwater Research, 50, 839–866.CrossRefGoogle Scholar
  19. Hovani, L. (2015). Lessons on Jurisdictional REDD+ from Berau District, East Kalimantan. The Nature Conservancy.Google Scholar
  20. Hughes, L. (2000), Biological consequences of global warming: is the signal already apparent? Trends in Ecology and Evolution 15, (2), 56–61.CrossRefGoogle Scholar
  21. Kartic, K. M., Annadurai, R., & Ravichandran, P. T. (2014). Assessment of soil erosion susceptibility in Koyhagiri Taluk using the revised universal soil loss equation and geospatial technology. Journal of Scientific and Research Publications, 4(10).Google Scholar
  22. Matsumoto, M. (2010). Changes in forest cover and biomass in Lao PDR. Japanese Forest Products Research Institute.Google Scholar
  23. McMahon, S. M., Parker, G. B., & Miller, D. R. (2010). Evidence for a recent increase in forest growth. Proceedings of the National Academy Science USA, 107(8), 3611–3615.CrossRefGoogle Scholar
  24. Mir, S. I., Sahid, I., Gasim, M. B., Rahim, S. A., & Turiman, M. E. (2015). Prediction of soil and nutrient losses from Lake Chini watershed, Pahang, Malaysia. Journal of Physical Science, 28(1), 53–70.Google Scholar
  25. Misir, N., Misir, M., Karahalil, V., & Yavuz, H. (2007). Characterisation of soil erosion and its implication for forest management. Journal of Environmental Biology, 28(2), 185–191.Google Scholar
  26. Moi, V. T. (2007). Soil erosion and nitrogen leaching in northern Vietnam: Experimentation and modelling. Ph.D. thesis, Wageningen University, The Netherlands.Google Scholar
  27. Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C., Tucker, C. J., et al. (2003). Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300, 1560–1563.CrossRefGoogle Scholar
  28. Pattanayak, S., & Mercer, D. E. (1996). Valuing soil conservation benefits of agroforestry practices (FPEI Working Paper No. 59) (21 pp). Research Triangle Park, NC: Southeastern Center for Forest Economics Research.Google Scholar
  29. Peng, S. B., Huang, J. L., Sheehy, J. E., Laza, R. C., Visperas, R. M., Zhong, X. H., et al. (2004). Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America, 101, 9971–9975.CrossRefGoogle Scholar
  30. Renard, K. G., Foster, G. R., Weesies, G. A., & Porter, P. (1991). The revised universal soil loss equation. Journal of Soil and Water Conservation, 46(1), 30–33.Google Scholar
  31. Rivera, R., MacDonagh, P., Garibaldi, J., Toma, T., & Cubbage, F. (2008). Impacts of conventional and reduced impact logging on growth and stand composition four years after harvest in a neotropical forest in Misiones, Argentina. Scientia Forestalis/Forest Sciences, 36(77), 21–31.Google Scholar
  32. Sagarin, R. D., Barry, J. P., Gilman, S. E., & Baxter, C. H. (1999). Climate-related change in an intertidal community over short and long time scales. Ecological Monographs, 69, 465–490.CrossRefGoogle Scholar
  33. Sheikh, A. H., Pairis, S., & Alam, A. (2011). Integration of the universal soil loss equation for soil loss estimates in a Himalaya watershed. Recent Research in Science and Technology, 3(3), 61–67.Google Scholar
  34. Trenberth, K. E., Jones, P. D., Ambenje, P. G., Bojariu, R., Easterling, D. R., Klein Tank, A. M. G., et al. (2007). Observations: Surface and atmospheric climate change. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change (pp. 235–336). Cambridge: Cambridge University Press.Google Scholar
  35. World Bank. (2018). State and trends in carbon pricing. Washington, DC: World Bank.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alastair Fraser
    • 1
  1. 1.Consultant in Forest Policy and EconomicsPerthshireUK

Personalised recommendations