Advertisement

Bibliometric-Enhanced Information Retrieval: 8th International BIR Workshop

  • Guillaume CabanacEmail author
  • Ingo Frommholz
  • Philipp Mayr
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11438)

Abstract

The Bibliometric-enhanced Information Retrieval workshop series (BIR) at ECIR tackles issues related to academic search, at the crossroads between Information Retrieval and Bibliometrics. BIR is a hot topic investigated by both academia (e.g., ArnetMiner, CiteSeer\(^\chi \), DocEar) and the industry (e.g., Google Scholar, Microsoft Academic Search, Semantic Scholar). An 8th iteration of the one-day BIR workshop was held at ECIR 2019.

Keywords

Academic search Information retrieval Digital Libraries Bibliometrics Scientometrics 

References

  1. 1.
    Beel, J., Langer, S., Gipp, B., Nürnberger, A.: The architecture and datasets of Docear’s research paper recommender system. D-Lib Mag. 20(11/12) (2014).  https://doi.org/10.1045/november14-beel
  2. 2.
    Bohannon, J.: A computer program just ranked the most influential brain scientists of the modern era. Science (2016).  https://doi.org/10.1126/science.aal0371
  3. 3.
    Cabanac, G., et al. (eds.): BIRNDL 2016: Proceedings of the Joint Workshop on Bibliometric-Enhanced Information Retrieval and Natural Language Processing for Digital Libraries Co-located with the Joint Conference on Digital Libraries, vol. 1610. CEUR-WS, Aachen (2016)Google Scholar
  4. 4.
    Cabanac, G., Frommholz, I., Mayr, P.: Bibliometric-enhanced information retrieval: preface. Scientometrics 116, 1225–1227 (2018).  https://doi.org/10.1007/s11192-018-2861-0CrossRefGoogle Scholar
  5. 5.
    Castelvecchi, D.: Google unveils search engine for open data. Nature (2018).  https://doi.org/10.1038/d41586-018-06201-x. (News & Comment)
  6. 6.
    Garfield, E.: Citation indexes for science: a new dimension in documentation through association of ideas. Science 122(3159), 108–111 (1955).  https://doi.org/10.1126/science.122.3159.108CrossRefGoogle Scholar
  7. 7.
    Garfield, E.: Patent citation indexing and the notions of novelty, similarity, and relevance. J. Chem. Doc. 6(2), 63–65 (1966).  https://doi.org/10.1021/c160021a001CrossRefGoogle Scholar
  8. 8.
    Jaidka, K., Chandrasekaran, M.K., Rustagi, S., Kan, M.Y.: Insights from CL-SciSumm 2016: the faceted scientific document summarization shared task. Int. J. Digit. Libr. 19(2–3), 163–171 (2018).  https://doi.org/10.1007/s00799-017-0221-yCrossRefGoogle Scholar
  9. 9.
    Leydesdorff, L., Milojević, S.: Scientometrics. In: Wright, J.D. (ed.) International Encyclopedia of the Social & Behavioral Sciences, vol. 21, 2nd edn, pp. 322–327. Elsevier, Amsterdam (2015).  https://doi.org/10.1016/b978-0-08-097086-8.85030-8CrossRefGoogle Scholar
  10. 10.
    Mayr, P., Chandrasekaran, M.K., Jaidka, K. (eds.): BIRNDL 2017: Proceedings of the 2nd Joint Workshop on Bibliometric-Enhanced Information Retrieval and Natural Language Processing for Digital Libraries Co-located with the Joint Conference on Digital Libraries, vol. 1888. CEUR-WS, Aachen (2017)Google Scholar
  11. 11.
    Mayr, P., Chandrasekaran, M.K., Jaidka, K. (eds.): BIRNDL 2017: Proceedings of the 3rd Joint Workshop on Bibliometric-Enhanced Information Retrieval and Natural Language Processing for Digital Libraries Co-located with the Joint Conference on Digital Libraries, vol. 2132. CEUR-WS, Aachen (2018)Google Scholar
  12. 12.
    Mayr, P., Frommholz, I., Cabanac, G. (eds.): BIR 2016 Proceedings of the 3rd Workshop on Bibliometric-Enhanced Information Retrieval Co-located with the 38th European Conference on Information Retrieval, vol. 1567. CEUR-WS, Aachen (2016)Google Scholar
  13. 13.
    Mayr, P., Frommholz, I., Cabanac, G. (eds.): BIR 2017 Proceedings of the 5th Workshop on Bibliometric-Enhanced Information Retrieval Co-located with the 39th European Conference on Information Retrieval, vol. 1823. CEUR-WS, Aachen (2017)Google Scholar
  14. 14.
    Mayr, P., Frommholz, I., Cabanac, G. (eds.): BIR 2018 Proceedings of the 7th Workshop on Bibliometric-Enhanced Information Retrieval Co-located with the 40th European Conference on Information Retrieval, vol. 2080. CEUR-WS (2018)Google Scholar
  15. 15.
    Mayr, P., Frommholz, I., Cabanac, G.: Report on the 7th International Workshop on Bibliometric-Enhanced Information Retrieval (BIR 2018). SIGIR Forum 52(1), 135–139 (2018).  https://doi.org/10.1145/3274784.3274798CrossRefGoogle Scholar
  16. 16.
    Mayr, P., et al.: Special issue on bibliometric-enhanced information retrieval and natural language processing for digital libraries. Int. J. Digit. Libr. 19(2–3), 107–111 (2018).  https://doi.org/10.1007/s00799-017-0230-xCrossRefGoogle Scholar
  17. 17.
    Mayr, P., Frommholz, I., Mutschke, P. (eds.): BIR 2015 Proceedings of the 2nd Workshop on Bibliometric-Enhanced Information Retrieval Co-located with the 37th European Conference on Information Retrieval, vol. 1344. CEUR-WS, Aachen (2015)Google Scholar
  18. 18.
    Mayr, P., Schaer, P., Scharnhorst, A., Larsen, B., Mutschke, P. (eds.): BIR 2016 Proceedings of the 1st Workshop on Bibliometric-Enhanced Information Retrieval Co-located with the 36th European Conference on Information Retrieval, vol. 1143. CEUR-WS, Aachen (2014)Google Scholar
  19. 19.
    Mayr, P., Scharnhorst, A.: Scientometrics and information retrieval: weak-links revitalized. Scientometrics 102(3), 2193–2199 (2015).  https://doi.org/10.1007/s11192-014-1484-3CrossRefGoogle Scholar
  20. 20.
    Pritchard, A.: Statistical bibliography or bibliometrics? J. Doc. 25(4), 348–349 (1969).  https://doi.org/10.1108/eb026482. (Documentation notes)CrossRefGoogle Scholar
  21. 21.
    Salton, G.: Associative document retrieval techniques using bibliographic information. J. ACM 10(4), 440–457 (1963).  https://doi.org/10.1145/321186.321188CrossRefzbMATHGoogle Scholar
  22. 22.
    Shotton, D.: Funders should mandate open citations. Nature 553(7687), 129 (2018).  https://doi.org/10.1038/d41586-018-00104-7CrossRefGoogle Scholar
  23. 23.
    Sinha, A., et al.: An overview of Microsoft Academic Service (MAS) and applications. In: Gangemi, A., Leonardi, S., Panconesi, A. (eds.) WWW 2015: Proceedings of the 24th International Conference on World Wide Web, pp. 243–246. ACM, New York (2015).  https://doi.org/10.1145/2740908.2742839
  24. 24.
    Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: ArnetMiner: extraction and mining of academic social networks. In: KDD 2008: Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998. ACM, New York (2008).  https://doi.org/10.1145/1401890.1402008
  25. 25.
    Van Noorden, R.: Google scholar pioneer on search engine’s future. Nature (2014).  https://doi.org/10.1038/nature.2014.16269
  26. 26.
    White, H.D., McCain, K.W.: Visualizing a discipline: an author co-citation analysis of information science, 1972–1995. J. Am. Soc. Inf. Sci. 49(4), 327–355 (1998). https://doi.org/b57vc7
  27. 27.
    Williams, K., Wu, J., Choudhury, S.R., Khabsa, M., Giles, C.L.: Scholarly big data information extraction and integration in the CiteSeer\(^\chi \) digital library. In: ICDE 2014: Proceedings of the 30th IEEE International Conference on Data Engineering Workshops, pp. 68–73. IEEE (2014).  https://doi.org/10.1109/icdew.2014.6818305

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Computer Science Department, IRIT UMR 5505University of ToulouseToulouseFrance
  2. 2.Institute for Research in Applicable ComputingUniversity of BedfordshireLutonUK
  3. 3.GESIS – Leibniz-Institute for the Social SciencesCologneGermany

Personalised recommendations