Advertisement

Modeling User Return Time Using Inhomogeneous Poisson Process

  • Mohammad AkbariEmail author
  • Alberto Cetoli
  • Stefano Bragaglia
  • Andrew D. O’Harney
  • Marc Sloan
  • Jun Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11438)

Abstract

For Intelligent Assistants (IA), user activity is often used as a lag metric for user satisfaction or engagement. Conversely, predictive leading metrics for engagement can be helpful with decision making and evaluating changes in satisfaction caused by new features. In this paper, we propose User Return Time (URT), a fine grain metric for gauging user engagement. To compute URT, we model continuous inter-arrival times between users’ use of service via a log Gaussian Cox process (LGCP), a form of inhomogeneous Poisson process which captures the irregular variations in user usage rate and personal preferences typical of an IA. We show the effectiveness of the proposed approaches on predicting the return time of users on real-world data collected from an IA. Experimental results demonstrate that our model is able to predict user return times reasonably well and considerably better than strong baselines that make the prediction based on past utterance frequency.

Keywords

User Return Time Prediction Intelligent Assistant 

References

  1. 1.
    Chakraborty, S., Radlinski, F., Shokouhi, M., Baecke, P.: On correlation of absence time and search effectiveness. In: Proceedings of the International ACM SIGIR Conference on Research & Development in Information Retrieval (2014)Google Scholar
  2. 2.
    Doerr, C., Blenn, N., Van Mieghem, P.: Lognormal infection times of online information spread. PloS One 8, e64349 (2013)CrossRefGoogle Scholar
  3. 3.
    Du, N., Wang, Y., He, N., Sun, J., Song, L.: Time-sensitive recommendation from recurrent user activities. In: Advances in Neural Information Processing Systems (2015)Google Scholar
  4. 4.
    Halfaker, A., et al.: User session identification based on strong regularities in inter-activity time. In: Proceedings of the International Conference on World Wide Web (2015)Google Scholar
  5. 5.
    He, D., Göker, A.: Detecting session boundaries from web user logs. In: Proceedings of the BCS-IRSG 22nd Annual Colloquium on Information Retrieval Research (2000)Google Scholar
  6. 6.
    Hosseini, S.A., et al.: Recurrent Poisson factorization for temporal recommendation. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2017)Google Scholar
  7. 7.
    Lee, S., Wilson, J.R., Crawford, M.M.: Modeling and simulation of a nonhomogeneous Poisson process having cyclic behavior. Commun. Stat.-Simul. Comput. 20, 777–809 (1991)CrossRefGoogle Scholar
  8. 8.
    Møller, J., Syversveen, A.R., Waagepetersen, R.P.: Log Gaussian cox processes. Scandinavian J. Stat. 25, 451–482 (1998)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ogata, Y.: On Lewis’ simulation method for point processes. IEEE Trans. Inf. Theory 27, 23–31 (1981)CrossRefGoogle Scholar
  10. 10.
    Rasmussen, C.E.: Gaussian processes in machine learning. In: Bousquet, O., von Luxburg, U., Rätsch, G. (eds.) ML -2003. LNCS (LNAI), vol. 3176, pp. 63–71. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28650-9_4CrossRefGoogle Scholar
  11. 11.
    Ross, S.M.: Introduction to probability models (2014)Google Scholar
  12. 12.
    Takeshi Sakaki, M.O., Matsuo, Y.: Earthquake shakes Twitter users: real-time event detection by social sensors (2010)Google Scholar
  13. 13.
    Yang, C., Shi, X., Jie, L., Han, J.: I know you’ll be back: interpretable new user clustering and churn prediction on a mobile social application. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2018)Google Scholar
  14. 14.
    Yang, S.H., Zha, H.: Mixture of mutually exciting processes for viral diffusion. In: International Conference on Machine Learning (2013)Google Scholar
  15. 15.
    Zhang, R., Walder, C., Rizoiu, M.A., Xie, L.: Efficient non-parametric Bayesian Hawkes processes. In: Proceedings of the International Conference on World Wide Web (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mohammad Akbari
    • 1
    • 2
    Email author
  • Alberto Cetoli
    • 2
  • Stefano Bragaglia
    • 2
  • Andrew D. O’Harney
    • 2
  • Marc Sloan
    • 2
  • Jun Wang
    • 1
  1. 1.University College LondonLondonUK
  2. 2.Context ScoutLondonUK

Personalised recommendations