Advertisement

Dynamic-Keyword Extraction from Social Media

  • David SemedoEmail author
  • João Magalhães
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11437)

Abstract

Traditional keyword extraction methods make the assumption that corpora is static. However, in social media, information is highly dynamic, with individual words showing a dynamic behaviour. In this paper we propose an unsupervised approach that jointly models words’ temporal behaviour and keyword’s semantic affinity, to address the task of dynamic-keyword extraction. Experiments show the method effectiveness and confirm the importance of exploiting keyword dynamics.

Keywords

Dynamic keyword extraction Information extraction Social media 

Notes

Acknowledgements

This work has been partially funded by the CMU Portugal research project GoLocal Ref. CMUP-ERI/TIC/0033/2014, by the H2020 ICT project COGNITUS with the grant agreement No 687605 and by the project NOVA LINCS Ref. UID/CEC/04516/2013.

References

  1. 1.
    Abilhoa, W.D., de Castro, L.N.: A keyword extraction method from twitter messages represented as graphs. Appl. Math. Comput. 240, 308–325 (2014).  https://doi.org/10.1016/j.amc.2014.04.090CrossRefGoogle Scholar
  2. 2.
    Barrios, F., López, F., Argerich, L., Wachenchauzer, R.: Variations of the similarity function of textrank for automated summarization. CoRR abs/1602.03606 (2016)Google Scholar
  3. 3.
    Blei, D.M., Lafferty, J.D.: Dynamic topic models. In: Proceedings of the 23rd International Conference on Machine Learning, ICML 2006, pp. 113–120. ACM, New York (2006).  https://doi.org/10.1145/1143844.1143859
  4. 4.
    Campos, R., Mangaravite, V., Pasquali, A., Jorge, A.M., Nunes, C., Jatowt, A.: A text feature based automatic keyword extraction method for single documents. In: Pasi, G., Piwowarski, B., Azzopardi, L., Hanbury, A. (eds.) ECIR 2018. LNCS, vol. 10772, pp. 684–691. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-76941-7_63CrossRefGoogle Scholar
  5. 5.
    Chen, S.F., Goodman, J.: An empirical study of smoothing techniques for language modeling. In: Proceedings of the 34th Annual Meeting on Association for Computational Linguistics, pp. 310–318. Association for Computational Linguistics (1996)Google Scholar
  6. 6.
    Graus, D., Tsagkias, M., Weerkamp, W., Meij, E., de Rijke, M.: Dynamic collective entity representations for entity ranking. In: Proceedings of the Ninth ACM International Conference on Web Search and Data Mining, WSDM 2016, pp. 595–604. ACM, New York (2016).  https://doi.org/10.1145/2835776.2835819
  7. 7.
    Litvak, M., Last, M.: Graph-based keyword extraction for single-document summarization. In: Proceedings of the Workshop on Multi-source Multilingual Information Extraction and Summarization, MMIES 2008, pp. 17–24. Association for Computational Linguistics, Stroudsburg (2008). http://dl.acm.org/citation.cfm?id=1613172.1613178
  8. 8.
    Liu, F., Pennell, D., Liu, F., Liu, Y.: Unsupervised approaches for automatic keyword extraction using meeting transcripts. In: Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, NAACL 2009, pp. 620–628. Association for Computational Linguistics, Stroudsburg (2009). http://dl.acm.org/citation.cfm?id=1620754.1620845
  9. 9.
    Liu, Z., Huang, W., Zheng, Y., Sun, M.: Automatic keyphrase extraction via topic decomposition. In: Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, EMNLP 2010, pp. 366–376. Association for Computational Linguistics, Stroudsburg (2010). http://dl.acm.org/citation.cfm?id=1870658.1870694
  10. 10.
    Marujo, L., et al.: Automatic keyword extraction on twitter. In: 53rd Annual Meeting of the Association for Computational Linguistics. ACL, July 2015Google Scholar
  11. 11.
    Mihalcea, R., Tarau, P.: TextRank: bringing order into texts. In: Proceedings of EMNLP-04 and the 2004 Conference on Empirical Methods in Natural Language Processing, July 2004Google Scholar
  12. 12.
    Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 26, pp. 3111–3119. Curran Associates Inc. (2013)Google Scholar
  13. 13.
    Řehůřek, R., Sojka, P.: Software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, pp. 45–50. ELRA, Valletta, May 2010. http://is.muni.cz/publication/884893/en
  14. 14.
    Rose, S., Engel, D., Cramer, N., Cowley, W.: Automatic keyword extraction from individual documents. In: Text Mining: Applications and Theory, pp. 1–20 (2010)Google Scholar
  15. 15.
    Wu, W., Zhang, B., Ostendorf, M.: Automatic generation of personalized annotation tags for twitter users. In: Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, HLT 2010, pp. 689–692. Association for Computational Linguistics, Stroudsburg (2010). http://dl.acm.org/citation.cfm?id=1857999.1858100
  16. 16.
    Zhao, W.X., et al.: Topical keyphrase extraction from Twitter. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies - Volume 1, HLT 2011, pp. 379–388. Association for Computational Linguistics, Stroudsburg (2011). http://portal.acm.org/citation.cfm?id=2002472.2002521
  17. 17.
    Zhao, W.X., et al.: Comparing twitter and traditional media using topic models. In: Clough, P., et al. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 338–349. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20161-5_34CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.NOVA LINCS, School of Science and TechnologyUniversidade NOVA de LisboaCaparicaPortugal

Personalised recommendations