LICD: A Language-Independent Approach for Aspect Category Detection

  • Erfan GhaderyEmail author
  • Sajad Movahedi
  • Masoud Jalili Sabet
  • Heshaam Faili
  • Azadeh Shakery
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11437)


Aspect-based sentiment analysis (ABSA) deals with processing and summarizing customer reviews and has been a topic of interest in recent years. Given a set of predefined categories, Aspect Category Detection (ACD), as a subtask of ABSA, aims to assign a subset of these categories to a given review sentence. Thanks to the existence of websites such as Yelp and TripAdvisor, there exist a huge amount of reviews in several languages, and therefore the need for language-independent methods in this task seems necessary. In this paper, we propose Language-Independent Category Detector (LICD), a supervised method based on text matching without the need for any language-specific tools and hand-crafted features for identifying aspect categories. For a given sentence, our proposed method performs ACD based on two hypotheses: First, a category should be assigned to a sentence if there is a high semantic similarity between the sentence and a set of representative words of that category. Second, a category should be assigned to a sentence if sentences with high semantic and structural similarity to that sentence belong to that category. To apply the former hypothesis, we used soft cosine measure, and for the latter, word mover’s distance measure is utilized. Using these two measures, for a given sentence we calculate a set of similarity scores as features for a one-vs-all logistic regression classifier per category. Experimental results on the multilingual SemEval-2016 datasets in the restaurant domain demonstrate that our approach outperforms baseline methods in English, Russian, and Dutch languages, and obtains competitive results with the strong deep neural network-based baselines in French, Turkish, and Spanish languages.


Aspect-based sentiment analysis Aspect category detection Consumer reviews Soft cosine measure Word mover’s distance 


  1. 1.
    Alvarez-López, T., Juncal-Martinez, J., Fernández-Gavilanes, M., Costa-Montenegro, E., González-Castano, F.J.: GTI at SemEval-2016 task 5: SVM and CRF for aspect detection and unsupervised aspect-based sentiment analysis. In: Proceedings of the 10th International Workshop On Semantic Evaluation (SemEval-2016), pp. 306–311 (2016)Google Scholar
  2. 2.
    Apidianaki, M., Tannier, X., Richart, C.: Datasets for aspect-based sentiment analysis in French. In: LREC (2016)Google Scholar
  3. 3.
    Bird, S., Klein, E., Loper, E.: Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit. O’Reilly Media Inc., Sebastopol (2009)zbMATHGoogle Scholar
  4. 4.
    Brun, C., Perez, J., Roux, C.: XRCE at SemEval-2016 task 5: feedbacked ensemble modeling on syntactico-semantic knowledge for aspect based sentiment analysis. In: Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), pp. 277–281 (2016)Google Scholar
  5. 5.
    Çetin, F.S., Yıldırım, E., Özbey, C., Eryiğit, G.: TGB at SemEval-2016 task 5: multi-lingual constraint system for aspect based sentiment analysis. In: Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), pp. 337–341 (2016)Google Scholar
  6. 6.
    Charlet, D., Damnati, G.: SimBow at SemEval-2017 task 3: soft-cosine semantic similarity between questions for community question answering. In: Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), pp. 315–319 (2017)Google Scholar
  7. 7.
    De Clercq, O., Hoste, V.: Rude waiter but mouthwatering pastries! an exploratory study into Dutch aspect-based sentiment analysis. In: Tenth International Conference on Language Resources and Evaluation (LREC2016), pp. 2910–2917. ELRA (2016)Google Scholar
  8. 8.
    Forman, G.: An extensive empirical study of feature selection metrics for text classification. J. Mach. Learn. Res. 3(Mar), 1289–1305 (2003)zbMATHGoogle Scholar
  9. 9.
    Ganu, G., Elhadad, N., Marian, A.: Beyond the stars: improving rating predictions using review text content. In: WebDB, vol. 9, pp. 1–6. Citeseer (2009)Google Scholar
  10. 10.
    Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 168–177. ACM (2004)Google Scholar
  11. 11.
    Khalil, T., El-Beltagy, S.R.: NileTMRG at SemEval-2016 task 5: deep convolutional neural networks for aspect category and sentiment extraction. In: Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), pp. 271–276 (2016)Google Scholar
  12. 12.
    Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
  13. 13.
    Kiritchenko, S., Zhu, X., Cherry, C., Mohammad, S.: NRC-Canada-2014: detecting aspects and sentiment in customer reviews. In: Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pp. 437–442 (2014)Google Scholar
  14. 14.
    Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: International Conference on Machine Learning, pp. 957–966 (2015)Google Scholar
  15. 15.
    Loukachevitch, N., Blinov, P., Kotelnikov, E., Rubtsova, Y., Ivanov, V., Tutubalina, E.: SentiRuEval: testing object-oriented sentiment analysis systems in Russian. In: Proceedings of International Conference Dialog, vol. 2, pp. 3–13 (2015)Google Scholar
  16. 16.
    Ma, W., Suel, T.: Structural sentence similarity estimation for short texts. In: FLAIRS Conference, pp. 232–237 (2016)Google Scholar
  17. 17.
    Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)
  18. 18.
    Novotnỳ, V.: Implementation notes for the soft cosine measure. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp. 1639–1642. ACM (2018)Google Scholar
  19. 19.
    Pang, B., Lee, L., et al.: Opinion mining and sentiment analysis. Found. Trends® Inf. Ret. 2(1–2), 1–135 (2008)CrossRefGoogle Scholar
  20. 20.
    Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Pontiki, M., et al.: SemEval-2016 task 5: aspect based sentiment analysis. In: Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), pp. 19–30 (2016)Google Scholar
  22. 22.
    Řehůřek, R., Sojka, P.: Software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, pp. 45–50. ELRA, Valletta, May 2010.
  23. 23.
    Rubner, Y., Tomasi, C., Guibas, L.J.: A metric for distributions with applications to image databases. In: Sixth International Conference on Computer Vision 1998, pp. 59–66. IEEE (1998)Google Scholar
  24. 24.
    Ruder, S., Ghaffari, P., Breslin, J.G.: A hierarchical model of reviews for aspect-based sentiment analysis. arXiv preprint arXiv:1609.02745 (2016)
  25. 25.
    Ruder, S., Ghaffari, P., Breslin, J.G.: Insight-1 at SemEval-2016 task 5: deep learning for multilingual aspect-based sentiment analysis. arXiv preprint arXiv:1609.02748 (2016)
  26. 26.
    Schouten, K., Frasincar, F.: Survey on aspect-level sentiment analysis. IEEE Trans. Knowl. Data Eng. 1, 1 (2016)Google Scholar
  27. 27.
    Sidorov, G., Gelbukh, A., Gómez-Adorno, H., Pinto, D.: Soft similarity and soft cosine measure: similarity of features in vector space model. Computación y Sistemas 18(3), 491–504 (2014)CrossRefGoogle Scholar
  28. 28.
    Su, Q., Xiang, K., Wang, H., Sun, B., Yu, S.: Using pointwise mutual information to identify implicit features in customer reviews. In: Matsumoto, Y., Sproat, R.W., Wong, K.-F., Zhang, M. (eds.) ICCPOL 2006. LNCS (LNAI), vol. 4285, pp. 22–30. Springer, Heidelberg (2006). Scholar
  29. 29.
    Tamchyna, A., Veselovská, K.: UFAL at SemEval-2016 task 5: recurrent neural networks for sentence classification. In: Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), pp. 367–371 (2016)Google Scholar
  30. 30.
    Tan, S., Zhang, J.: An empirical study of sentiment analysis for chinese documents. Expert Syst. Appl. 34(4), 2622–2629 (2008)CrossRefGoogle Scholar
  31. 31.
    Toh, Z., Su, J.: NLANGP at SemEval-2016 task 5: improving aspect based sentiment analysis using neural network features. In: Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), pp. 282–288 (2016)Google Scholar
  32. 32.
    Xenos, D., Theodorakakos, P., Pavlopoulos, J., Malakasiotis, P., Androutsopoulos, I.: AUEB-ABSA at SemEval-2016 task 5: ensembles of classifiers and embeddings for aspect based sentiment analysis. In: Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), pp. 312–317 (2016)Google Scholar
  33. 33.
    Xue, W., Zhou, W., Li, T., Wang, Q.: MTNA: a neural multi-task model for aspect category classification and aspect term extraction on restaurant reviews. In: Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers), vol. 2, pp. 151–156 (2017)Google Scholar
  34. 34.
    Zhou, X., Wan, X., Xiao, J.: Representation learning for aspect category detection in online reviews. In: AAAI, pp. 417–424 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Erfan Ghadery
    • 1
    Email author
  • Sajad Movahedi
    • 1
  • Masoud Jalili Sabet
    • 2
  • Heshaam Faili
    • 1
  • Azadeh Shakery
    • 1
  1. 1.School of ECE, College of EngineeringUniversity of TehranTehranIran
  2. 2.Center for Information and Language Processing (CIS) LMU MunichMunichGermany

Personalised recommendations