Advertisement

Relationship Prediction in Dynamic Heterogeneous Information Networks

  • Amin Milani FardEmail author
  • Ebrahim Bagheri
  • Ke Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11437)

Abstract

Most real-world information networks, such as social networks, are heterogeneous and as such, relationships in these networks can be of different types and hence carry differing semantics. Therefore techniques for link prediction in homogeneous networks cannot be directly applied on heterogeneous ones. On the other hand, works that investigate link prediction in heterogeneous networks do not necessarily consider network dynamism in sequential time intervals. In this work we propose a technique that leverages a combination of latent and topological features to predict a target relationship between two nodes in a dynamic heterogeneous information network. Our technique, called MetaDynaMix, effectively combines meta path-based topology features and inferred latent features that incorporate temporal network changes in order to capture network (1) heterogeneity and (2) temporal evolution, when making link predictions. Our experiment results on two real-world datasets show statistically significant improvement over AUCROC and prediction accuracy compared to the state of the art techniques.

References

  1. 1.
    Al Hasan, M., Chaoji, V., Salem, S., Zaki, M.: Link prediction using supervised learning. In: SDM06: Workshop on Link Analysis, Counter-Terrorism and Security (2006)Google Scholar
  2. 2.
    Al Hasan, M., Zaki, M.J.: A survey of link prediction in social networks. In: Aggarwal, C. (ed.) Social Network Data Analytics, pp. 243–275. Springer, Boston (2011).  https://doi.org/10.1007/978-1-4419-8462-3_9CrossRefGoogle Scholar
  3. 3.
    Cantador, I., Brusilovsky, P., Kuflik, T.: 2nd workshop on information heterogeneity and fusion in recommender systems (HetRec 2011). In: Proceedings of the 5th ACM Conference on Recommender Systems, RecSys 2011, ACM. New York (2011). http://www.grouplens.org
  4. 4.
    Chen, H., Li, X., Huang, Z.: Link prediction approach to collaborative filtering. In: Proceedings of the 5th ACM/IEEE-CS Joint Conference on Digital Libraries, JCDL 2005, pp. 141–142. IEEE (2005)Google Scholar
  5. 5.
    Davis, J., Goadrich, M.: The relationship between precision-recall and ROC curves. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 233–240. ACM (2006)Google Scholar
  6. 6.
    Denny, J.C.: Mining electronic health records in the genomics era. PLoS Comput. Biol. 8(12), e1002823 (2012)CrossRefGoogle Scholar
  7. 7.
    Dunlavy, D.M., Kolda, T.G., Acar, E.: Temporal link prediction using matrix and tensor factorizations. ACM Trans. Knowl. Discovery Data (TKDD) 5(2), 10 (2011)Google Scholar
  8. 8.
    Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: a library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008). https://github.com/cjlin1/liblinearzbMATHGoogle Scholar
  9. 9.
    Fire, M., Katz, G., Rokach, L., Elovici, Y.: Links reconstruction attack. In: Altshuler, Y., Elovici, Y., Cremers, A., Aharony, N., Pentland, A. (eds.) Security and Privacy in Social Networks, pp. 181–196. Springer, New York (2013).  https://doi.org/10.1007/978-1-4614-4139-7_9CrossRefGoogle Scholar
  10. 10.
    Fu, W., Song, L., Xing, E.P.: Dynamic mixed membership blockmodel for evolving networks. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 329–336. ACM (2009)Google Scholar
  11. 11.
    Gallagher, B., Tong, H., Eliassi-Rad, T., Faloutsos, C.: Using ghost edges for classification in sparsely labeled networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 256–264. ACM (2008)Google Scholar
  12. 12.
    Guimerà, R., Sales-Pardo, M.: Missing and spurious interactions and the reconstruction of complex networks. Proc. Nat. Acad. Sci. 106(52), 22073–22078 (2009)CrossRefGoogle Scholar
  13. 13.
    Guy, I.: Social recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 511–543. Springer, Boston (2015).  https://doi.org/10.1007/978-1-4899-7637-6_15CrossRefGoogle Scholar
  14. 14.
    Hay, M., Miklau, G., Jensen, D., Towsley, D., Weis, P.: Resisting structural re-identification in anonymized social networks. Proc. VLDB Endowment 1(1), 102–114 (2008)CrossRefGoogle Scholar
  15. 15.
    Lei, C., Ruan, J.: A novel link prediction algorithm for reconstructing protein-protein interaction networks by topological similarity. Bioinformatics 29(3), 355–364 (2012)CrossRefGoogle Scholar
  16. 16.
    Leroy, V., Cambazoglu, B.B., Bonchi, F.: Cold start link prediction. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 393–402. ACM (2010)Google Scholar
  17. 17.
    Li, X., Chen, H.: Recommendation as link prediction in bipartite graphs: a graph kernel-based machine learning approach. Decis. Support Syst. 54(2), 880–890 (2013)CrossRefGoogle Scholar
  18. 18.
    Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc. Inform. Sci. Technol. 58(7), 1019–1031 (2007)CrossRefGoogle Scholar
  19. 19.
    Lichtenwalter, R.N., Lussier, J.T., Chawla, N.V.: New perspectives and methods in link prediction. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 243–252. ACM (2010)Google Scholar
  20. 20.
    Lü, L., Medo, M., Yeung, C.H., Zhang, Y.C., Zhang, Z.K., Zhou, T.: Recommender systems. Phys. Rep. 519(1), 1–49 (2012)CrossRefGoogle Scholar
  21. 21.
    McNemar, Q.: Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika 12(2), 153–157 (1947)CrossRefGoogle Scholar
  22. 22.
    Menon, A.K., Elkan, C.: Link prediction via matrix factorization. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS (LNAI), vol. 6912, pp. 437–452. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23783-6_28CrossRefGoogle Scholar
  23. 23.
    Milani Fard, A., Wang, K.: Neighborhood randomization for link privacy in social network analysis. World Wide Web 18(1), 9–32 (2015)CrossRefGoogle Scholar
  24. 24.
    Milani Fard, A., Wang, K., Yu, P.S.: Limiting link disclosure in social network analysis through subgraph-wise perturbation. In: Proceedings of the International Conference on Extending Database Technology (EDBT), pp. 109–119. ACM (2012)Google Scholar
  25. 25.
    Qi, G.J., Aggarwal, C.C., Huang, T.: Link prediction across networks by biased cross-network sampling. In: IEEE 29th International Conference on Data Engineering (ICDE), pp. 793–804. IEEE (2013)Google Scholar
  26. 26.
    Sarkar, P., Moore, A.W.: Dynamic social network analysis using latent space models. ACM SIGKDD Explor. Newsl. 7(2), 31–40 (2005)CrossRefGoogle Scholar
  27. 27.
    Shi, C., Kong, X., Huang, Y., Philip, S.Y., Wu, B.: HeteSim: a general framework for relevance measure in heterogeneous networks. IEEE Trans. Knowl. Data Eng. 26(10), 2479–2492 (2014)CrossRefGoogle Scholar
  28. 28.
    Shi, C., Li, Y., Zhang, J., Sun, Y., Philip, S.Y.: A survey of heterogeneous information network analysis. IEEE Trans. Knowl. Data Eng. 29(1), 17–37 (2017)CrossRefGoogle Scholar
  29. 29.
    Song, H.H., Cho, T.W., Dave, V., Zhang, Y., Qiu, L.: Scalable proximity estimation and link prediction in online social networks. In: Proceedings of the 9th ACM SIGCOMM Conference on Internet measurement, pp. 322–335. ACM (2009)Google Scholar
  30. 30.
    Sun, Y., Barber, R., Gupta, M., Aggarwal, C.C., Han, J.: Co-author relationship prediction in heterogeneous bibliographic networks. In: Proceedings of the 2011 International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2011, pp. 121–128. IEEE Computer Society (2011)Google Scholar
  31. 31.
    Sun, Y., Han, J., Aggarwal, C.C., Chawla, N.V.: When will it happen? Relationship prediction in heterogeneous information networks. In: Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, WSDM 2012, pp. 663–672. ACM, New York (2012)Google Scholar
  32. 32.
    Sun, Y., Han, J., Yan, X., Yu, P.S., Wu, T.: PathSim: meta path-based top-k similarity search in heterogeneous information networks. In: Proceedings of the VLDB Endowment, vol. 4, no. 11, pp. 992–1003. VLDB Endowment (2011)Google Scholar
  33. 33.
    Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: ArnetMiner: extraction and mining of academic social networks. In: KDD 2008, pp. 990–998 (2008). https://aminer.org/citation
  34. 34.
    Wang, C., Satuluri, V., Parthasarathy, S.: Local probabilistic models for link prediction. In: ICDM, pp. 322–331. IEEE (2007)Google Scholar
  35. 35.
    Wang, C., Song, Y., El-Kishky, A., Roth, D., Zhang, M., Han, J.: Incorporating world knowledge to document clustering via heterogeneous information networks. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1215–1224. ACM (2015)Google Scholar
  36. 36.
    Wang, C., Song, Y., Li, H., Zhang, M., Han, J.: Text classification with heterogeneous information network kernels. In: AAAI, pp. 2130–2136 (2016)Google Scholar
  37. 37.
    Ye, J., Cheng, H., Zhu, Z., Chen, M.: Predicting positive and negative links in signed social networks by transfer learning. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 1477–1488. ACM (2013)Google Scholar
  38. 38.
    Yin, J., Ho, Q., Xing, E.P.: A scalable approach to probabilistic latent space inference of large-scale networks. In: Advances in Neural Information Processing Systems, pp. 422–430 (2013)Google Scholar
  39. 39.
    Zhang, J., Wang, C., Wang, J., Yu, J.X.: Inferring continuous dynamic social influence and personal preference for temporal behavior prediction. Proc. VLDB Endowment 8(3), 269–280 (2014)CrossRefGoogle Scholar
  40. 40.
    Zheleva, E., Getoor, L.: Preserving the privacy of sensitive relationships in graph data. In: Bonchi, F., Ferrari, E., Malin, B., Saygin, Y. (eds.) PInKDD 2007. LNCS, vol. 4890, pp. 153–171. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78478-4_9CrossRefGoogle Scholar
  41. 41.
    Zhu, L., Guo, D., Yin, J., Steeg, G.V., Galstyan, A.: Scalable temporal latent space inference for link prediction in dynamic social networks. IEEE Trans. Knowl. Data Eng. (TKDE) 28(10), 2765–2777 (2016). https://github.com/linhongseba/Temporal-Network-EmbeddingCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.New York Institute of TechnologyVancouverCanada
  2. 2.Ryerson UniversityTorontoCanada
  3. 3.Simon Fraser UniversityBurnabyCanada

Personalised recommendations