Advertisement

Evaluating the Impact of Resistive Defects on FinFET-Based SRAMs

  • Thiago S. Copetti
  • Guilherme C. Medeiros
  • Letícia M. B. PoehlsEmail author
  • Tiago R. Balen
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 500)

Abstract

The development of FinFET technology has made possible the continuous scaling-down of CMOS technological nodes. In parallel, the increasing need to store more information has resulted in the fact that Static Random Access Memories (SRAMs) occupy great part of Systems-on-Chip (SoCs). The manufacturing process variation has introduced several types of defects that directly affect the SRAM’s reliability, causing different faults. Thus, it remains unknown if the fault models used in CMOS memory circuits are sufficiently accurate to represent the faulty behavior of FinFET-based memories. In this context, a study of manufacturing’s functional implications regarding resistive defects in FinFET-based SRAMs is presented. In more detail, a complete analysis of static and dynamic fault behavior for FinFET-based SRAMs is described. The proposed analysis has been performed through SPICE simulations, adopting a compact Predictive Technology Model (PTM) of FinFET transistors, considering different technological nodes. Faults have been categorized as single or coupling, static or dynamic.

Keywords

FinFET SRAM Resistive defects SPICE PTM 

References

  1. 1.
    Colinge, J.-P.: FinFETs and Other Multi-Gate Transistors. Springer, Boston (2008).  https://doi.org/10.1007/978-0-387-71752-4CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Samsung: Strong 14 nm FinFET Logic Process and Design Infrastructure for Advanced Mobile SOC Applications (2013)Google Scholar
  4. 4.
    Tang, S.H., et al.: FinFET-a quasi-planar double-gate MOSFET. In: 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No.01CH37177), pp. 118–119. IEEE (2001)Google Scholar
  5. 5.
    Yu, B., et al.: FinFET scaling to 10 nm gate length. In: Digest. International Electron Devices Meeting, pp. 251–254. IEEE (2002)Google Scholar
  6. 6.
    Chang, J.B., et al.: Scaling of SOI FinFETs down to fin width of 4 nm for the 10 nm technology node. In: 2011 Symposium on VLSI Technology - Digest of Technical Papers (2011)Google Scholar
  7. 7.
    Bhattacharya, D., Jha, N.K.: FinFETs: from devices to architectures. Adv. Electron. 2014, 1–21 (2014)CrossRefGoogle Scholar
  8. 8.
    International Technology Roadmap for Semiconductors: Executive Summary - 2013 Edition (2013)Google Scholar
  9. 9.
    Bosio, A., Dilillo, L., Girard, P., Pravossoudovitch, S., Virazel, A.: Advanced test methods for SRAMs. In: Proceedings of the IEEE VLSI Test Symposium, pp. 300–301 (2012)Google Scholar
  10. 10.
    Dilillo, L., Girard, P., Pravossoudovitch, S., Virazel, A., Borri, S., Hage-Hassan, M.: Resistive-open defects in embedded-SRAM core cells: analysis and March test solution. In: 13th Asian Test Symposium, pp. 266–271 (2004)Google Scholar
  11. 11.
    Fonseca, R.A., et al.: Analysis of resistive-bridging defects in SRAM core-cells: a comparative study from 90 nm down to 40 nm technology nodes. In: 2010 15th IEEE European Test Symposium, ETS 2010, vol. 1, pp. 132–137 (2010)Google Scholar
  12. 12.
    Li, J.C.M., Tseng, C.-W., McCluskey, E.J.: Testing for resistive opens and stuck opens. In: Proceedings International Test Conference 2001 (Cat. No. 01CH37260), pp. 1049–1058. IEEE (2001)Google Scholar
  13. 13.
    Van de Goor, A.J., Al-Ars, Z.: Functional memory faults: a formal notation and a taxonomy. In: Proceedings of the 18th IEEE VLSI Test Symposium, pp. 281–289 (2000)Google Scholar
  14. 14.
    Borri, S., Hage-Hassan, M., Dilillo, L., Girard, P., Pravossoudovitch, S., Virazel, A.: Analysis of dynamic faults in embedded-SRAMs: implications for memory test. J. Electron. Test. 21, 169–179 (2005)CrossRefGoogle Scholar
  15. 15.
    Dubey, P., Garg, A., Mahajan, S.: Study of read recovery dynamic faults in 6T SRAMS and method to improve test time. J. Electron. Test. 26, 659–666 (2010)CrossRefGoogle Scholar
  16. 16.
    Harutyunyan, G., Shoukourian, S., Vardanian, V., Zorian, Y.: Impact of process variations on read failures in SRAMs. In: East-West Design & Test Symposium (EWDTS 2013), pp. 1–4. IEEE (2013)Google Scholar
  17. 17.
    Needham, W., Prunty, C., Yeoh, E.H.: High volume microprocessor test escapes, an analysis of defects our tests are missing. In: Proceedings International Test Conference 1998 (IEEE Cat. No. 98CH36270), pp. 25–34 (1998). Int. Test ConferenceGoogle Scholar
  18. 18.
    Borri, S., Hage-Hassan, M., Dilillo, L., Girard, P., Pravossoudovitch, S., Virazel, A.: Analysis of dynamic faults in embedded-SRAMs: implications for memory test. J. Electron. Test. Theory Appl. 21, 169–179 (2005)CrossRefGoogle Scholar
  19. 19.
    Benso, A., Bosio, A., Di Carlo, S., Di Natale, G., Prinetto, P.: March AB, March AB1: new March tests for unlinked dynamic memory faults. In: Proceedings of the - International Test Conference 2005, pp. 834–841 (2005)Google Scholar
  20. 20.
    Bosio, A., Di Carlo, S., Di Natale, G., Prinetto, P.: March AB, a state-of-the-art March test for realistic static linked faults and dynamic faults in SRAMs. IET Comput. Digit. Tech. 1, 237–245 (2007)CrossRefGoogle Scholar
  21. 21.
    Hamdioui, S., Al-Ars, Z., Van De Goor, A.J.: Testing static and dynamic faults in random access memories. In: Proceedings of the IEEE VLSI Test Symposium 2002, January, pp. 395–400 (2002)Google Scholar
  22. 22.
    Harutyunyan, G., Martirosyan, S., Shoukourian, S., Zorian, Y.: Memory physical aware multi-level fault diagnosis flow. IEEE Trans. Emerg. Top. Comput. 1 (2018)Google Scholar
  23. 23.
    Harutyunyan, G., Tshagharyan, G., Zorian, Y.: Test and repair methodology for FinFET-based memories. IEEE Trans. Device Mater. Reliab. 15, 3–9 (2015)CrossRefGoogle Scholar
  24. 24.
    Harutyunyan, G., Tshagharyan, G., Vardanian, V., Zorian, Y.: Fault modeling and test algorithm creation strategy for FinFET-based memories. In: 2014 IEEE 32nd VLSI Test Symposium (VTS), pp. 1–6. IEEE (2014)Google Scholar
  25. 25.
    Segura, J.A., Champac, V.H., Rodríguez-Montañés, R., Figueras, J., Rubio, J.A.: Quiescent current analysis and experimentation of defective CMOS circuits. J. Electron. Test. 3, 337–348 (1992)CrossRefGoogle Scholar
  26. 26.
    Dilillo, L., Girard, P., Pravossoudovitch, S., Virazel, A., Bastian, M.: Resistive-open defect injection in SRAM core-cell. In: Proceedings of the 42nd Annual Conference on Design Automation - DAC 2005, p. 857. ACM Press, New York (2005)Google Scholar
  27. 27.
    Vatajelu, E.I., et al.: Analyzing resistive-open defects in SRAM core-cell under the effect of process variability. In: 2013 18th IEEE European Test Symposium (ETS), pp. 1–6. IEEE (2013)Google Scholar
  28. 28.
    Fonseca, R.A., et al.: Analysis of resistive-bridging defects in SRAM core-cells: a comparative study from 90 nm down to 40 nm technology nodes. In: 2010 15th IEEE European Test Symposium, ETS 2010, pp. 132–137 (2010)Google Scholar
  29. 29.
    Fonseca, R.A., et al.: Impact of resistive-bridging defects in SRAM core-cell. In: 2010 Fifth IEEE International Symposium on Electronic Design, Test & Applications, pp. 265–269. IEEE (2010)Google Scholar
  30. 30.
    Copetti, T.S., Medeiros, G.C., Poehls, L.M.B., Balen, T.R.: Analyzing the behavior of FinFET SRAMs with resistive defects. In: 2017 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC), Abu Dhabi, pp. 1–6 (2017)Google Scholar
  31. 31.
    Intel: Intel’s 14 nm Technology: Delivering Ultrafast, Energy-Sipping Products (2017)Google Scholar
  32. 32.
    Samsung: Samsung Mass Produces 14-Nanometer Exynos Processor with Full Connectivity Integration (2016)Google Scholar
  33. 33.
    Nanoscale Integration and Modeling (NIMO): Predictive Technology Model (PTM). http://ptm.asu.edu/
  34. 34.
    Hisamoto, D., Kaga, T., Kawamoto, Y., Takeda, E.: A fully depleted lean-channel transistor (DELTA)-a novel vertical ultra thin SOI MOSFET. In: International Technical Digest on Electron Devices Meeting, pp. 833–836. IEEE (1989)Google Scholar
  35. 35.
    Simsir, M.O., Bhoj, A., Jha, N.K.: Fault modeling for FinFET circuits. In: 2010 IEEE/ACM International Symposium on Nanoscale Architectures, pp. 41–46. IEEE (2010)Google Scholar
  36. 36.
    Karl, E., et al.: A 4.6 GHz 162 Mb SRAM design in 22 nm tri-gate CMOS technology with integrated read and write assist circuitry. IEEE J. Solid-State Circ. 48, 150–158 (2013)CrossRefGoogle Scholar
  37. 37.
    Jan, C.H., et al.: A 22 nm SoC platform technology featuring 3-D tri-gate and high-k/metal gate, optimized for ultra low power, high performance and high density SoC applications. Tech. Dig. - Int. Electron Devices Meet. IEDM. 44–47 (2012)Google Scholar
  38. 38.
    Burnett, D., Parihar, S., Ramamurthy, H., Balasubramanian, S.: FinFET SRAM design challenges. In: 2014 IEEE International Conference on IC Design & Technology, pp. 1–4. IEEE (2014)Google Scholar
  39. 39.
    Liu, Y., Xu, Q.: On modeling faults in FinFET logic circuits. In: 2012 IEEE International Test Conference, pp. 1–9. IEEE (2012)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  • Thiago S. Copetti
    • 1
  • Guilherme C. Medeiros
    • 2
  • Letícia M. B. Poehls
    • 2
    Email author
  • Tiago R. Balen
    • 1
  1. 1.Graduate Program on Microelectronics – PGMICROFederal University of Rio Grande do SulPorto AlegreBrazil
  2. 2.Graduate Program on Electrical EngineeringPontifical Catholic University of Rio Grande do SulPorto AlegreBrazil

Personalised recommendations