Advertisement

Pushing the Limits Further: Sub-Atomic AES

  • Markus Stefan WamserEmail author
  • Georg Sigl
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 500)

Abstract

The recent trend to connect a plethora of sensors, embedded and ubiquitous systems with low computing power, in short the rise of the Internet of Things, has created a great demand for compact, lightweight and cheap to produce implementations of cryptographic primitives.

One approach to meet this demand is the development and standardisation of new tailored primitives, most prominently PRESENT. Yet, the wide proliferation of the Advanced Encryption Standard and the trust it earned through its long history of withstanding cryptanalysis spurred anew the search for small, lightweight implementations of AES.

Among the smallest published architectures is the AtomicAES design by Banik et al., who reported a design size of just over 2000 GE.

Here we present a new 8-bit serial architecture that has been designed from careful observation of the minimum required connections between storage elements to support all dataflows required for execution of the algorithm. While we reach similar conclusions to previous publications, the new architecture enables us to push the area requirement for a fully featured AES primitive further down by more than 8% from the area requirement of AtomicAES while offering more functionality.

Along the way we also answer in the affirmative the open question whether the AES reverse keyschedule can be implemented with negligible hardware overhead based on the forward keyschedule.

Our design sets a new record for an 8-bit serial architecture with full functionality for encryption and decryption including the keyschedule, as well as for a sole encryption architecture. Furthermore our design is flexible enough to allow scaling the S-Box architecture from single-cycle to multi-stage pipelined approaches as are required for high operation frequencies or for protection against side-channel attacks. We demonstrate this by instantiating the design with a serial version of the S-Box to reduce the area requirement even further.

Keywords

AES Lightweight 8-bit-serial ASIC Block cypher S-Box 

References

  1. 1.
    Ahmed, E.G., Shaaban, E., Hashem, M.: Lightweight mix columns implementation for AES. In: Proceedings of the 9th WSEAS International Conference on Applied Informatics and Communications, AIC 2009, pp. 253–258. World Scientific and Engineering Academy and Society (WSEAS), Stevens Point, Wisconsin, USA (2009). http://portal.acm.org/citation.cfm?id=1628143
  2. 2.
    Banik, S., et al.: Midori: A block cipher for low energy (extended version). Cryptology ePrint Archive, Report 2015/1142, November 2015. http://eprint.iacr.org/2015/1142
  3. 3.
    Banik, S., Bogdanov, A., Regazzoni, F.: Atomic-AES: a compact implementation of the AES Encryption/Decryption core. Cryptology ePrint Archive, Report 2016/927, September 2016. http://eprint.iacr.org/2016/927
  4. 4.
    Banik, S., Bogdanov, A., Regazzoni, F.: Atomic-AES v 2.0. Cryptology ePrint Archive, Report 2016/1005, October 2016. http://eprint.iacr.org/2016/1005
  5. 5.
    Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint Archive, Report 2013/404, June 2013. http://eprint.iacr.org/2013/404
  6. 6.
    Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74735-2_31CrossRefGoogle Scholar
  7. 7.
    Borghoff, J., et al.: PRINCE - a low-latency block cipher for pervasive computing applications (full version). Cryptology ePrint Archive, Report 2012/529, September 2012. http://eprint.iacr.org/2012/529
  8. 8.
    Canright, D.: A very compact S-box for AES. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005).  https://doi.org/10.1007/11545262_32CrossRefGoogle Scholar
  9. 9.
    Chawla, S.S., Aggarwal, S., Kamal, S., Goel, N.: FPGA implementation of an optimized 8-bit AES architecture: a masked S-box and pipelined approach. In: 2015 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), pp. 1–6. IEEE, July 2015. http://dx.doi.org/10.1109/conecct.2015.7383859
  10. 10.
    Daemen, J., Peeters, M., Van Assche, G., Rijmen, V.: The NOEKEON block cipher. Technical report, October 2000. http://gro.noekeon.org/Noekeon-spec.pdf
  11. 11.
    De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN—a family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04138-9_20CrossRefzbMATHGoogle Scholar
  12. 12.
    Feldhofer, M., Wolkerstorfer, J., Rijmen, V.: AES implementation on a grain of sand. In: IEE Proceedings - Information Security, vol. 152, no. 1, p. 13+ (2005). http://dx.doi.org/10.1049/ip-ifs:20055006
  13. 13.
    Feldhofer, M., Lemke, K., Oswald, E., Standaert, F.X., Wollinger, T., Wolkerstorfer, J.: State of the art in hardware architectures. Note: deliverable with a special focus on AES hardware architectures. ECRYPT Deliverable No. D.VAM2, September 2005. http://www.iaik.tugraz.at/content/research/krypto/AES/VAM2-IAIK-17-D.VAM2-1_0.pdf
  14. 14.
    Gong, Z., Nikova, S., Law, Y.W.: KLEIN: a new family of lightweight block ciphers. In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 1–18. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-25286-0_1CrossRefGoogle Scholar
  15. 15.
    Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23951-9_22CrossRefGoogle Scholar
  16. 16.
    Hämäläinen, P., Alho, T., Hännikäinen, M., Hämäläinen, T.D.: Design and implementation of low-area and low-power AES encryption hardware core. In: 9th EUROMICRO Conference on Digital System Design (DSD 2006), pp. 577–583. IEEE (2006). http://dx.doi.org/10.1109/dsd.2006.40
  17. 17.
    ISO/IEC: ISO/IEC 29192–2:2012 - information technology - security techniques - lightweight cryptography - part 2: Block ciphers. Technical report, International Organization for Standardization, January 2012. https://www.iso.org/standard/56552.html
  18. 18.
    Knudsen, L., Leander, G., Poschmann, A., Robshaw, M.J.B.: PRINTcipher: a block cipher for IC-printing. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 16–32. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15031-9_2CrossRefGoogle Scholar
  19. 19.
    Knudsen, L.R., Robshaw, M.: The Block Cipher Companion. Springer, Heidelberg (2011). http://link.springer.com/book/10.1007%2F978-3-642-17342-4
  20. 20.
    Mathew, S., et al.: 340 mV-1.1 V, 289 Gbps/W, 2090-gate nanoAES hardware accelerator with area-optimized encrypt/decrypt \(GF(2^4)^2\) polynomials in 22 nm tri-gate CMOS. IEEE J. Solid-State Circ. 50(4), 1048–1058 (2015). http://dx.doi.org/10.1109/jssc.2014.2384039
  21. 21.
    Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20465-4_6CrossRefGoogle Scholar
  22. 22.
    Pramstaller, N., Mangard, S., Dominikus, S., Wolkerstorfer, J.: Efficient AES implementations on ASICs and FPGAs. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) AES 2004. LNCS, vol. 3373, pp. 98–112. Springer, Heidelberg (2005).  https://doi.org/10.1007/11506447_9CrossRefzbMATHGoogle Scholar
  23. 23.
    Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A compact Rijndael hardware architecture with S-box optimization. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 239–254. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45682-1_15CrossRefGoogle Scholar
  24. 24.
    Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo: an ultra-lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23951-9_23CrossRefGoogle Scholar
  25. 25.
    Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: \(\mathit{TWINE}\): a lightweight block cipher for multiple platforms. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 339–354. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-35999-6_22CrossRefGoogle Scholar
  26. 26.
    Wamser, M.S.: Ultra-small designs for inversion-based S-boxes. In: 17th Euromicro Conference on Digital System Design, pp. 512–519. Department of Computer Science, Università di Verona. IEEE, August 2014. http://dx.doi.org/10.1109/DSD.2014.37
  27. 27.
    Wamser, M.S., Sigl, G.: Pushing the limits further: sub-atomic AES. In: 2017 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC), pp. 1–6 (2017). http://dx.doi.org/10.1109/VLSI-SoC.2017.8203470
  28. 28.
    Zhang, W., Bao, Z., Lin, D., Rijmen, V., Yang, B., Verbauwhede, I.: RECTANGLE: a bit-slice Ultra-Lightweight block cipher suitable for multiple platforms. Cryptology ePrint Archive, Report 2014/084, February 2014. http://eprint.iacr.org/2014/084

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  1. 1.Lehrstuhl für Sicherheit in der InformationstechnikTechnische Universität MünchenMunichGermany

Personalised recommendations