Decoherence and Ontology

  • Roland Omnès
Part of the Synthese Library book series (SYLI, volume 406)


This paper discusses the consequences of quantum mechanics for our understanding of physical reality, particularly regarding how classical concepts emerge from quantum laws; how common sense logic stands out as a special case of quantum logic applied to macroscopic objects; how causality and locality are found to be “provincial” consequences of quanta; how tiny probabilities that would seem to turn reality into an appearance are so small that unreality does not matter; how quantum theory agrees with everything observed, except for a uniqueness that (alas) is the very essence of reality.


  1. Aspect, A., Grangier, P., & Roger, G. (1981). Experimental tests of realistic local theories via Bell’s theorem. Physical Review Letters, 47, 460–463.CrossRefGoogle Scholar
  2. Bell, J. S. (1964). On the Einstein Podolsky Rosen paradox. Physics, 1, 195–200.CrossRefGoogle Scholar
  3. Birkhoff, G., & J. von Neumann. (1936). The logic of quantum mechanics. The Annals of Mathematics, 2nd Series, 37, 823–843.Google Scholar
  4. Borel, E. (1937). Valeur pratique et philosophie des probabilités. Paris: Gauthier-Villars.Google Scholar
  5. Borel, E. (1941). Le jeu, la chance et eta théories scientifiques modernes. Paris: Gallimard.Google Scholar
  6. Brune, M., et al. (1996). Observing the progressive decoherence of the “meter” in a quantum measurement. Physical Review Letters, 77, 4887.CrossRefGoogle Scholar
  7. Caldeira, A. O., & Leggett, A. J. (1983). Path integral approach to quantum Brownian motion. Physica A, 121, 587.CrossRefGoogle Scholar
  8. Clarke, J., Cleland, A. N., Devoret, M., Esteve, D., & Martinis, J. M. (1988). Quantum mechanics of a macroscopic variable: The phase difference of a Josephson junction. Science, 239(4843), 992–997.CrossRefGoogle Scholar
  9. Gell-Mann, M., & Hartle, J. B. (1991). Quantum mechanics in the light of quantum cosmology. In W. H. Zurek (Ed.), Complexity, entropy and the physics of information. Redwood City: Addison-Wesley.Google Scholar
  10. Griffiths, R. G. (1984). Consistent histories and the interpretation of quantum mechanics. Journal of Statistical Physics, 36, 219–272.CrossRefGoogle Scholar
  11. Hepp, K. (1974). The classical limit for quantum mechanical correlation functions. Communications in Mathematical Physics, 35, 265–277.CrossRefGoogle Scholar
  12. Joos, E., & Zeh, H. D. (1985). The emergence of classical properties through interaction with the environment. Zeitschrift für Physik B Condensed Matter, 59, 223–243.CrossRefGoogle Scholar
  13. Omnès, R. (1989). Logical reformulation of quantum mechanics. IV. Projectors in semiclassical physics. Journal of Statistical Physics, 57, 357.CrossRefGoogle Scholar
  14. Omnès, R. (1997a). General theory of the decoherence effect in quantum mechanics. Physical Review A, 56, 3383.CrossRefGoogle Scholar
  15. Omnès, R. (1997b). Quantum-classical correspondence using projection operators. Journal of Mathematical Physics, 38, 697.CrossRefGoogle Scholar
  16. Omnès, R. (1999). Understanding quantum mechanics. Princeton: Princeton University Press.Google Scholar
  17. Zurek, W. H. (1982). Environment-induced superselection rules. Physical Review D, 26, 1862.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Roland Omnès
    • 1
  1. 1.University of Paris, Paris-Sud XIOrsayFrance

Personalised recommendations