Advertisement

A Reconstruction of Quantum Mechanics

  • Simon KochenEmail author
Chapter
Part of the Synthese Library book series (SYLI, volume 406)

Abstract

We show that exactly the same intuitively plausible definitions of state, observable, symmetry, dynamics, and compound systems of the classical Boolean structure of intrinsic properties of systems lead, when applied to the structure of extrinsic, relational quantum properties, to the standard quantum formalism, including the Schrödinger equation and the von Neumann–Lüders Projection Rule. This approach is then applied to resolving the paradoxes and difficulties of the orthodox interpretation.

References

  1. Bargmann, V. (1964). Note on Wigner’s theorem on symmetry operations. Journal of Mathematical Physics, 5, 862.CrossRefGoogle Scholar
  2. Beltrametti, E. G., & Cassinelli, G. (1981). The logic of quantum mechanics. Reading: Addison-Wesley.Google Scholar
  3. Birkhoff, G., & von Neumann, J. (1936). The logic of quantum mechanics. Annals of Mathematics, 37, 823.CrossRefGoogle Scholar
  4. Bohm, A. (2001). Quantum mechanics: Foundations and applications. New York: SpringerGoogle Scholar
  5. Bohr, N. (1937). Causality and complementarity. Philosophy of Science, 4, 289.CrossRefGoogle Scholar
  6. Conway, J., & Kochen, S. (2002). The geometry of the quantum paradoxes. In R. A. Bertlemann & A. Zeilinger (Eds.), Quantum [un]speakables (p. 257). Berlin: Springer.CrossRefGoogle Scholar
  7. Conway, J., & Kochen, S. (2009). The strong free will theorem. Notices American Mathematical Society, 56, 226.Google Scholar
  8. Faddeev, L. D., & Yakubovskii, O. A. (2009). Lectures on quantum mechanics for mathematics students. Providence: American Mathematical Society.CrossRefGoogle Scholar
  9. Feynman, R. P. (1948). Space-time approach to non-relativistic quantum mechanics. Reviews of Modern Physics, 20, 36.CrossRefGoogle Scholar
  10. Feynman, R. P., Leighton, R. B., & Sands, M. (1966). The Feynman lectures on physics (vol. 3). Reading: Addison-Wesley.Google Scholar
  11. Finkelstein, D. (1963). The logic of quantum physics. Transactions of the New York Academy of Sciences, 25, 621.CrossRefGoogle Scholar
  12. Gleason, A. M. (1957). Measures on the closed subspaces of a Hilbert space. Journal of Mathematics and Mechanics, 6, 885.Google Scholar
  13. Jauch, J. M. (1968). Foundations of quantum mechanics. Reading: Addison-Wesley.Google Scholar
  14. Kochen, S., & Specker, E. P. (1964). The calculus of partial propositional functions, methodology and philosophy of science, Congress at Jerusalem (vol. 45).Google Scholar
  15. Kochen, S., & Specker, E. P. (1967a). The problem of hidden variables in quantum mechanics. Journal of Mathematics and Mechanics, 17, 59.Google Scholar
  16. Kochen, S., & Specker, E. P. (1967b). Logical structures arising in quantum mechanics. The theory of models, symposium at Berkeley (vol. 177).Google Scholar
  17. Koppelberg, S. (1989). Handbook of boolean algebras (vol. 1). Amsterdam: North-Holland.Google Scholar
  18. Mackey, G. W. (1963). Mathematical foundations of quantum mechanics. Amsterdam: Benjamin.Google Scholar
  19. Piron, C. (1976). Foundations of quantum physics. Reading: Benjamin.Google Scholar
  20. Reck, M., Zeilinger, A., Bernstein, H. J., & Bertani, P. (1994). Experimental realization of any discrete unitary operator. Physical Review Letters, 73, 58.CrossRefGoogle Scholar
  21. Uhlhorn, U. (1963). Representation of symmetric transformations in quantum mechanics. Arkiv Fysik, 23, 307.Google Scholar
  22. Varadarajan, V. S. (1968). The geometry of quantum theory. Princeton: Van Nostrand.CrossRefGoogle Scholar
  23. Wrede, E. (1927). Uber die Ablenkung von Molekularstrahlen elektrischer Dipolmolekule iminhomogenen elektrischen Feld. Z. Phys. A, 44, 261.CrossRefGoogle Scholar
  24. Zukowski, M., Zeilinger, A., & Horne, M. A. (1997). Realizable higher-dimensional two-particle entanglements via multiport beam splitters. Physical Review A, 55, 2564.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Mathematics DepartmentPrinceton UniversityPrincetonUSA

Personalised recommendations