Advertisement

Introduction: Philosophers Look at Quantum Mechanics

  • Alberto Cordero
Chapter
Part of the Synthese Library book series (SYLI, volume 406)

Abstract

This chapterprovides background to the topics covered in the volume and gives a rough mapping of the papers included. Section 1.1 is on Bell’s Theorem and the debate on realism. Section 1.2 considers non-realist responses to the puzzles of quantum mechanics (QM). Section 1.3 outlines the character of realist projects today. Section 1.4 looks at ongoing ontological explorations of the quantum state. Section 1.5 concentrates on fine-grain realist approaches to the nature of the quantum state. Section 1.6 is on individuals and individualization. Section 1.7 discusses a current revival of interest in Niels Bohr’s insights on QM. Section 1.8 outlines some contemporary calls to reconceptualize QM. Section 1.9 ends the chapter with some personal suggestions regarding the scope and limits of realist interpretation.

References

  1. Albert, D. Z. (1996). Elementary quantum metaphysics. In J. Cushing, A. Fine, & S. Goldstein (Eds.), Bohmian mechanics and quantum theory: an appraisal (Boston Studies in the Philosophy of Science, 184) (pp. 277–284). Dordrecht: Kluwer.CrossRefGoogle Scholar
  2. Albert, D. Z. (2003). Time and chance. Cambridge, MA: Harvard University Press.Google Scholar
  3. Aspect, A. (2002). The naive view of an experimentalist. In R. A. Bertlmann & A. Zeilinger (Eds.), Quantum [Un]speakables – From Bell to quantum information (pp. 119–153). Berlin: Springer.CrossRefGoogle Scholar
  4. Bell, J. S. (1964). On the Einstein-Podolsky-Rosen paradox. Physics, 1, 195–200.CrossRefGoogle Scholar
  5. Bell, J. S. (1973). Subject and object. In J. Mehra (Ed.), The physicist’s conception of nature (pp. 687–690). Dordrecht: Reidel. (Reprinted in Speakable and unspeakable in quantum mechanics. Cambridge University Press, 1987.).CrossRefGoogle Scholar
  6. Bohr, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physical Review, 48, 696–702.CrossRefGoogle Scholar
  7. Bub, J., & Pitowski, I. (2010). Two dogmas about quantum mechanics. In S. Saunders, J. Barrett, A. Kent, & D. Wallace (Eds.), Many worlds? Everett, quantum theory, and reality (pp. 431–456). Oxford: Oxford University Press.Google Scholar
  8. Cordero, A. (2001). Realism and Underdetermination: Some clues from the practices-up. Philosophy of Science, 68S, S301–S312.CrossRefGoogle Scholar
  9. Cordero, A. (2017). Retention, truth-content and selective realism. In E. Agazzi (Ed.), Scientific realism: The problem of objectivity and truth in science (pp. 245–256). Cham: Springer Nature.CrossRefGoogle Scholar
  10. Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47, 777–780.CrossRefGoogle Scholar
  11. Everett, H., III. (1957). ‘Relative state’ formulation of quantum mechanics. Reviews of Modern Physics, 29, 454–462.CrossRefGoogle Scholar
  12. Van Fraassen, B. C. (1980). The scientific image. Oxford: Oxford University Press.CrossRefGoogle Scholar
  13. French, S., & Krause, D. (2006). Identity in physics: A historical, philosophical, and formal analysis. Oxford: Clarendon Press.CrossRefGoogle Scholar
  14. Gell-Mann, M., & Hartle, J. B. (1993). Classical equations for quantum systems. Physical Reviews D, 47, 3345–3382.CrossRefGoogle Scholar
  15. Ghirardi, G. C., Rimini, A., & Weber, T. (1986). Unified dynamics for microscopic and macroscopic systems. Physical Review D, 34, 440–491.CrossRefGoogle Scholar
  16. Ghirardi, G. C., Grassi, R., & Pearle, P. (1990). Relativistic dynamic reduction models—General framework and examples. Foundations of Physics, 20, 1271.CrossRefGoogle Scholar
  17. Kitcher, P. (1993). The advancement of science. Oxford: Oxford University Press.Google Scholar
  18. Kochen, S., & Specker, E. P. (1967). The problem of hidden variables in quantum mechanics. Journal of Mathematics and Mechanics, 17, 59–87.Google Scholar
  19. Leplin, J. (1997). A novel defense of scientific realism. New York: Oxford University Press.Google Scholar
  20. Lewis, P. (2016). Quantum ontology: A guide to the metaphysics of quantum mechanics. New York: Oxford University Press.CrossRefGoogle Scholar
  21. Masgrau, L., Roujeinikova, A., Johannissen, L. O., Hothi, P., Basran, J., Ranaghan, K. E., Mulholland, A. J., Sutcliffe, M. J., et al. (2006). Atomic description of an enzyme reaction dominated by proton tunneling. Science, 312(5771), 237–241.CrossRefGoogle Scholar
  22. Messiah, A. (1961/2014). Quantum mechanics. Mineola. NY: Dover Publications.Google Scholar
  23. Ney, A. (2013). Ontological reduction and the wave function ontology. In D. Z. Albert & A. Ney (Eds.), The wave function: Essays on the metaphysics of quantum mechanics (pp. 168–183). New York: Oxford University Press.CrossRefGoogle Scholar
  24. Psillos, S. (1999). Scientific realism. London: Routledge.Google Scholar
  25. Putnam, H. (1965). A philosopher looks at quantum mechanics. In Robert G, Colodny (Ed.). Beyond the edge of certainty: Essays in contemporary science and philosophy. Englewood Cliffs. Reproduced in: Hilary Putnam: Mathematics, Matter, and Method. Philosophical Papers, Vol. I. Cambridge (Vol. 1975, pp. 130–158).Google Scholar
  26. Saatsi, J. (2015). Replacing recipe realism. Synthese, 194(9), 3233–3244.CrossRefGoogle Scholar
  27. Saatsi, J. (2016). What is theoretical progress of science. Synthese, 196(2), 611–631.  https://doi.org/10.1007/s11229-016-1118-9.CrossRefGoogle Scholar
  28. Schiff, L. I. (1949). Quantum mechanics. New York: McGraw-Hill Book Co.Google Scholar
  29. Simonov, K., & Hiesmayr, B. C. (2016). Spontaneous collapse: A solution to the measurement problem and a source of the decay in mesonic systems. Physical Review A, 94(052128), 1–20.Google Scholar
  30. Timpson, C. G. (2008). Quantum Bayesianism: A Study. Studies in History and Philosophy of Modern Physics, 39(3), 579–609.  https://doi.org/10.1016/j.shpsb.2008.03.006.CrossRefGoogle Scholar
  31. Tumulka, R. (2006). A relativistic version of the Ghirardi–Rimini–Weber model. Journal of Statistical Physics, 125, 821–840.CrossRefGoogle Scholar
  32. Valentini, A. (1991) Signal locality, uncertainty, and the subquantum H-Theorem. Part I in Physics Letters A 156, 5–11. Part II in Physics Letters A 158, 1–8.Google Scholar
  33. Van Fraassen, B. C. (1991). Quantum mechanics: An empiricist view. Oxford: Clarendon Press.CrossRefGoogle Scholar
  34. Wallace, D. (2012). The emergent multiverse: Quantum theory according to the Everett interpretation. Oxford: Oxford University Press.CrossRefGoogle Scholar
  35. Worrall, J. (1989). Structural realism: The best of both worlds? Dialectica, 43, 99–124.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alberto Cordero
    • 1
  1. 1.CUNY Graduate Center & Queens College CUNYThe City University of New YorkNewYorkCityUSA

Personalised recommendations