GeCoLan: A Constraint Language for Reasoning About Ecological Networks in the Semantic Web

  • Gianluca TortaEmail author
  • Liliana Ardissono
  • Marco Corona
  • Luigi La Riccia
  • Adriano Savoca
  • Angioletta Voghera
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 976)


Ecological Networks (ENs) describe the structure of existing real ecosystems and help planning their expansion, conservation and improvement. While various mathematical models of ENs have been defined, to our knowledge they focus on simulating ecosystems, but none of them deals with verifying whether any transformation proposals, as those collected in participatory decision-making processes for public policy making, are consistent with land usage restrictions.

As an attempt to fill this gap, we developed a model to represent the specifications for the local planning of ENs in a way that can support both the detection of constraint violations within new proposals of expansion, and the reasoning about improvements of the networks. In line with the GeoSpatial Semantic WEB, our model is based on an OWL ontology for the representation of ENs. Moreover, we define a language, GeCoLan, supporting constraint-based reasoning on semantic data. Even though this paper focuses on EN validation, our language can be employed to enable more complex tasks, such as the generation of proposals for improving ENs.

The present paper describes our ontological specification of ENs, the GeCoLan language for reasoning about specifications, and the tools we developed to support data acquisition and constraint verification on ENs.


Geographic knowledge Geographical constraints GeoSPARQL Ecological networks Urban planning 



This work is partially funded by project MIMOSA (MultIModal Ontology-driven query system for the heterogeneous data of a SmArtcity, “Progetto di Ateneo Torino_call2014_L2_157”, 2015–17), and by “Ricerca Locale” and “Ricerca Autofinanziata” of the University of Torino.


  1. 1.
    Jongman, R.: Nature conservation planning in Europe: developing ecological networks. Landsc. Urban Plan. 32, 169–183 (1995)CrossRefGoogle Scholar
  2. 2.
    Council of Europe: General guidelines for the development of the Pan-European Ecological Network. Nature and environment 107 (2000)Google Scholar
  3. 3.
    Bennett, G., Wit, P.: The development and application of ecological networks: a review of proposals, plans and programmes. AIDEnvironment (2001)Google Scholar
  4. 4.
    Bennett, G., Mulongoy, K.: Review of experience with ecological networks, corridors and buffer zones. Technical Series 23 (2006)Google Scholar
  5. 5.
    Città Metropolitana di Torino: Misura 323 del PSR 2007–2013 (in Italian) (2014).
  6. 6.
    Janowicz, K., Scheider, S., Pehle, T., Ha, G.: Geospatial semantics and linked spatiotemporal data - past, present, and future. Semant. Web - Linked Spatiotemporal Data Geo-Ontol. 3, 321–332 (2012)Google Scholar
  7. 7.
    Fonseca, F., Egenhofer, M., Davis Jr., C.A., Borges, K.: Ontologies and knowledge sharing in urban GIS. Comput. Environ. Urban Syst. 24, 251–272 (2000)CrossRefGoogle Scholar
  8. 8.
    Fonseca, F., Egenhofer, M., Agouris, P., Câmara, G.: Using ontologies for geographic information systems. Trans. GIS 3, 231–257 (2002)CrossRefGoogle Scholar
  9. 9.
    Dechter, R.: Constraint networks. In: Encyclopedia of Artificial Intelligence, 2nd ed. pp. 276–285 (1992)Google Scholar
  10. 10.
    W3C: Web ontology language (OWL) (2017).
  11. 11.
    OCG: GeoSPARQL - a geographic query language for RDF data (2017).
  12. 12.
    Ajit, S., Sleeman, D., Fowler, D.W., Knott, D.: Constraint capture and maintenance in engineering design. Artif. Intell. Eng. Des. Anal. Manuf. 22, 325–343 (2008)CrossRefGoogle Scholar
  13. 13.
    Louwsma, J., Zlatanova, S., van Lammeren, R., van Oosterom, P.: Specifying and implementing constraints in GIS - with examples from a geo-virtual reality system. GeoInformatica 10, 531–550 (2006)CrossRefGoogle Scholar
  14. 14.
    W3C: SPARQL query language for RDF.
  15. 15.
    Torta, G., Ardissono, L., Savoca, A., Voghera, A., Riccia, L.L.: Representing ecological network specifications with semantic web techniques. In: Proceedings of 9th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (KEOD 2017), Funchal, Madeira, Portugal, pp. 86–97. SCITEPRESS (2017)Google Scholar
  16. 16.
    W3C: Resource description framework (RDF) (2017).
  17. 17.
    Fath, B., Sharler, U., Ulanowicz, R., Hannon, B.: Ecological network analysis: network construction. Trends Ecol. Evol. 208, 49–55 (2007)Google Scholar
  18. 18.
    Ulanowicz, R.: Quantitative methods for ecological network analysis. Comput. Biol. Chem. 28, 321–339 (2004)CrossRefGoogle Scholar
  19. 19.
    Lurgi, M., Robertson, D.: Automated experimentation in ecological networks. Autom. Exp. 3, 1 (2011)CrossRefGoogle Scholar
  20. 20.
    Gobluski, A., Westlund, E., Vandermeer, J., Pascual, M.: Ecological networks over the edge: hypergraph trait-mediated indirect interaction (TMII) structure. Trends Ecol. Evol. 31, 344–354 (2016)CrossRefGoogle Scholar
  21. 21.
    Pilosof, S., Porter, M., Pascual, M., Kefi, S.: The mulutilayer nature of ecological networks. Nat. Ecol. Evol. 1 (2017). Article No. 101Google Scholar
  22. 22.
    Battle, R., Kolas, D.: Enabling the geospatial semantic web with parliament and GeoSPARQL. Semant. Web 3, 355–370 (2012)Google Scholar
  23. 23.
  24. 24.
    Urban, S.: ALICE: an assertion language for integrity constraint expression. In: Proceedings of Computer Software and Applications Conference, pp. 292–299 (1989)Google Scholar
  25. 25.
    Bassiliades, N., Gray, P.: CoLan: a functional constraint language and its implementation. Data Knowl. Eng. 14, 203–249 (1995)CrossRefGoogle Scholar
  26. 26.
    Christensen, J.V., Johnsen, M.: Formalizing constraints for geographic information. In: Nilsson, A.G., Gustas, R., Wojtkowski, W., Wojtkowski, W.G., Wrycza, S., Zupančič, J. (eds.) Advances in Information Systems Development, pp. 657–667. Springer, Boston (2006). Scholar
  27. 27.
    Horrocks, I., Patel-Schneider, P., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: a semantic web rule language combining OWL and RuleML. W3C Member submission 21 (2004)Google Scholar
  28. 28.
    Boley, H., Tabet, S., Wagner, G.: Design rationale of RuleML: a markup language for semantic web rules. In: Proceedings of the First International Conference on Semantic Web Working, pp. 381–401, (2001)Google Scholar
  29. 29.
    Boley, H., et al.: FOL RuleML: the first-order logic web language (2004).
  30. 30.
    W3C: A Proposal for a SWRL Extension towards First-Order Logic (2005).
  31. 31.
    Keßler, C., Raubal, M., Wosniok, C.: Semantic rules for context-aware geographical information retrieval. In: Barnaghi, P., Moessner, K., Presser, M., Meissner, S. (eds.) EuroSSC 2009. LNCS, vol. 5741, pp. 77–92. Springer, Heidelberg (2009). Scholar
  32. 32.
    Gray, P., Hui, K., Preece, A.: An expressive constraint language for semantic web applications. In: E-Business and the Intelligent Web: Papers from the IJCAI 2001 Workshop, pp. 46–53 (2001)Google Scholar
  33. 33.
    Arenas, M., Gottlob, G., Pieris, A.: Expressive languages for querying the semantic web. In: Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 14–26. ACM (2014)Google Scholar
  34. 34.
    Fürber, C., Hepp, M.: Using SPARQL and SPIN for data quality management on the semantic web. In: Abramowicz, W., Tolksdorf, R. (eds.) BIS 2010. LNBIP, vol. 47, pp. 35–46. Springer, Heidelberg (2010). Scholar
  35. 35.
    Grau, B., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., Sattler, U.: OWL 2: the next step for OWL. Web Semant.: Sci. Serv. Agents World Wide Web 6, 309–322 (2008)CrossRefGoogle Scholar
  36. 36.
  37. 37.
    Open Geospatial Consortium, et al.: OpenGIS Implementation Standard for Geographic information-Simple feature access-Part 1: Common architecture (2011)Google Scholar
  38. 38.
    Cohn, A., Bennett, B., Gooday, J., Gotts, N.: Qualitative spatial representation and reasoning with the region connection calculus. GeoInformatica 1, 275–316 (1997)CrossRefGoogle Scholar
  39. 39.
    Egenhofer, M.J.: A formal definition of binary topological relationships. In: Litwin, W., Schek, H.-J. (eds.) FODO 1989. LNCS, vol. 367, pp. 457–472. Springer, Heidelberg (1989). Scholar
  40. 40.
  41. 41.
    Krötzsch, M.: Description Logic Rules. Studies on the Semantic Web, vol. 8. IOS Press, Amsterdam (2010)zbMATHGoogle Scholar
  42. 42.
    Saalfeld, A.: Topologically consistent line simplification with the Douglas-Peucker algorithm. Cartogr. Geogr. Inf. Sci. 26, 7–18 (1999)CrossRefGoogle Scholar
  43. 43.
    Angles, R., Gutierrez, C.: The expressive power of SPARQL. In: Proceedings of International Semantic Web Conference, pp. 114–129 (2008)Google Scholar
  44. 44.
    Kostylev, E., Reutter, J., Ugarte, M.: Construct queries in SPARQL. In: LIPIcs-Leibniz International Proceedings in Informatics, vol. 31 (2015)Google Scholar
  45. 45.
    Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, Boston (1994)zbMATHGoogle Scholar
  46. 46.
    Lloyd, J.W.: Foundations of Logic Programming. Springer, Heidelberg (2012). Scholar
  47. 47.
    Marek, V.W., Truszczyński, M.: Stable models and an alternative logic programming paradigm. In: Apt, K.R., Marek, V.W., Truszczynski, M., Warren, D.S. (eds.) The Logic Programming Paradigm, pp. 375–398. Springer, Heidelberg (1999). Scholar
  48. 48.
    Brailsford, S.C., Potts, C.N., Smith, B.M.: Constraint satisfaction problems: algorithms and applications. Eur. J. Oper. Res. 119, 557–581 (1999)CrossRefGoogle Scholar
  49. 49.
    Fabri, A., Giezeman, G.J., Kettner, L., Schirra, S., Schönherr, S.: On the design of CGAL a computational geometry algorithms library. Softw. Pract. Exp. 30, 1167–1202 (2000)CrossRefGoogle Scholar
  50. 50.
    Shekhar, S., Xiong, H.: Java Topology Suite (JTS). In: Shekhar, S., Xiong, H. (eds.) Encyclopedia of GIS, p. 601. Springer, Boston (2008). Scholar
  51. 51.
    Voghera, A., Crivello, R., Ardissono, L., Lucenteforte, M., Savoca, A., La Riccia, L.: Production of spatial representations through collaborative mapping. an experiment. In: Proceedings of 9th International Conference on Innovation in Urban and Regional Planning (INPUT 2016), pp. 356–361 (2016)Google Scholar
  52. 52.
    Ardissono, L., Lucenteforte, M., Mauro, N., Savoca, A., Voghera, A., La Riccia, L.: OnToMap - semantic community maps for knowledge sharing. In: Proceedings of Hypertext 2017, pp. 317–318. ACM (2017)Google Scholar
  53. 53.
    Ardissono, L., Ferrero, M., Petrone, G., Segnan, M.: Enhancing collaborative filtering with friendship information. In: Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization, pp. 353–354. ACM (2017)Google Scholar
  54. 54.
    The Ushahidi Ecosystem: Ushahidi (2015).
  55. 55.
    Hunter, A., et al.: PlanYourPlace - a geospatial infrastructure for sustainable community planning. Int. J. Geomat. Spat. Anal. 22, 223–253 (2012)Google Scholar
  56. 56.
    Sun, Y., Li, S.: Real-time collaborative GIS: a technological review. ISPRS J. Photogramm. Remote Sens. 115, 143–152 (2016)CrossRefGoogle Scholar
  57. 57.
    Hu, Y., Lv, Z., Wu, J., Janowicz, K., Zhao, X., Yu, B.: A multistage collaborative 3D GIS to support public participation. Int. J. Digit. Earth 8, 212–234 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gianluca Torta
    • 1
    Email author
  • Liliana Ardissono
    • 1
  • Marco Corona
    • 1
  • Luigi La Riccia
    • 2
  • Adriano Savoca
    • 1
  • Angioletta Voghera
    • 2
  1. 1.Dipartimento di InformaticaUniversità di TorinoTurinItaly
  2. 2.Dipartimento Interateneo di ScienzeProgetto e Politiche del TerritorioTurinItaly

Personalised recommendations