The Continental Shelf

  • Peter Townsend Harris


In the next two chapters, we will take a tour aboard an imaginary hover car to visit the world’s continental shelves and the deep ocean. The continental shelf (as the name suggests) is the submerged part of the continents, and the features we see underwater are comparable to those we see today along the coast. The continental shelf is where rivers disgorge their loads of sediment and where glaciers built moraines during the ice age, providing the material needed to make sandbanks. Sand is in fact the second most used commodity on Earth after freshwater. It is a key ingredient of concrete and is also used to replenish beaches that are eroding because of rising sea level. In this chapter we will observe the impacts of bottom trawl fishing on seabed habitats and consider the need for marine parks. We will explore hidden coral reefs in the Gulf of Carpentaria and see how bleaching of corals is happening more and more often. Has a tipping point been passed? Will we be able to save the coral reefs? To avoid burning fossil fuels, we should look at harnessing the ocean’s tide power as a renewable power source. Human impacts on land often reach the ocean. The Ok Tedi gold mine disaster in the Fly River, Papua New Guinea, is an example of this.


Algae line Pipette analysis Sand mining Moreton Bay Lag deposit Sediment sorting Kelp forest Ghost fishing Bottom trawling Microplastic Gulf of Carpentaria Mesophotic coral reef Coral bleaching Ocean warming lag effect Tipping point Tide power Mike Collins Side scan sonar Bristol Channel Fly River Delta Ok Tedi mine Clinoforms Coral Sea Current 


  1. Baker, E. K., & Harris, P. T. (1991). Copper, lead and zinc in the sediments of the Fly River Delta and Torres Strait. Marine Pollution Bulletin, 22, 614–618.CrossRefGoogle Scholar
  2. Baker, E. K., Puglise, K. A., & Harris, P. T. (2016). Mesophotic coral ecosystems — A lifeboat for coral reefs? (p. 98). The United Nations Environment Programme and GRID-Arendal, Nairobi and Arendal.
  3. Burke, L., Reytar, K., Spalding, M., & Perry, A. (2011). Reefs at risk revisited (p. 130). Washington, D.C.: World Resources Institute.
  4. Galgani, F., Leaute, J. P., Moguedet, P., Souplet, A., Verin, Y., Carpentier, A., Goraguer, H., Latrouite, D., Andral, B., Cadiou, Y., Mahe, J. C., Poulard, J. C., & Nerisson, P. (2000). Litter on the sea floor along European coasts. Marine Pollution Bulletin, 40, 516–527.CrossRefGoogle Scholar
  5. Galloway, W. E. (1975). Process framework for describing the morphologic and stratigraphic evolution of deltaic depositional systems. In M. L. Broussard (Ed.), Deltas, models for exploration (pp. 87–98). Houston: Houston Geological Society.Google Scholar
  6. Hansen, J., Nazarenko, L., Ruedy, R., Sato, M., Willis, J., Del Genio, A., Koch, D., Lacis, A., Lo, K., Menon, S., Novakov, T., Perlwitz, J., Russell, G., Schmidt, G. A., & Tausnev, N. (2004). Earth’s energy imbalance: Confirmation and implications. Science, 308, 1431–1435.CrossRefGoogle Scholar
  7. Harris, P. T., & Collins, M. B. (1988). Estimation of annual bedload flux in a macrotidal estuary, Bristol Channel, U. K. Marine Geology, 83, 237–252.CrossRefGoogle Scholar
  8. Harris, P. T., & MacMillan-Lawler, M. (2016). In C. W. Finkl & C. Makowski (Eds.), Global overview of continental shelf geomorphology based on the SRTM30_PLUS 30-arc second database. Seafloor mapping along continental shelves (pp. 169–190). Cham: Springer International Publishing.CrossRefGoogle Scholar
  9. Harris, P. T., Baker, E. K., Cole, A. R., & Short, S. A. (1993). A preliminary study of sedimentation in the tidally dominated Fly River Delta, Gulf of Papua. Continental Shelf Research, 13, 441–472.CrossRefGoogle Scholar
  10. Harris, P. T., Hughes, M. G., Baker, E. K., Dalrymple, R. W., & Keene, J. B. (2004). Sediment transport in distributary channels and its export to the pro-deltaic environment in a tidally-dominated delta: Fly River, Papua New Guinea. Continental Shelf Research, 24, 2431–2454.CrossRefGoogle Scholar
  11. Harris, P. T., Heap, A. D., Marshall, J. F., & McCulloch, M. T. (2008). A new coral reef province in the Gulf of Carpentaria, Australia: Colonisation, growth and submergence during the early Holocene. Marine Geology, 251, 85–97.CrossRefGoogle Scholar
  12. Harris, P. T., MacMillan-Lawler, M., Rupp, J., & Baker, E. K. (2014). Geomorphology of the oceans. Marine Geology, 352, 4–24.CrossRefGoogle Scholar
  13. Hughes, T. P., Barnes, M. L., Bellwood, D. R., Cinner, J. E., Cumming, G. S., Jackson, J. B. C., Kleypas, J., van de Leemput, I. A., Lough, J. M., Morrison, T. H., Palumbi, S. R., van Nes, E. H., & Scheffer, M. (2017). Coral reefs in the Anthropocene. Nature, 546, 82–90.CrossRefGoogle Scholar
  14. Norse, E. A., & Crowder, L. B. (2005). Marine conservation biology (p. 470). Washington, D.C.: Island Press.Google Scholar
  15. Pattiaratchi, C. B., & Harris, P. T. (2002). Hydrodynamic and sand transport controls on en echelon sandbank formation: An example from Moreton Bay, eastern Australia. Journal of Marine Research, 53, 1–13.CrossRefGoogle Scholar
  16. Peduzzi, P. (2014). Sand – Rarer than one thinks. Global environmental alert series (p. 15). Geneva: UNEP/GRID-Geneva.
  17. Schwable, P., Leibmann, B., Köppel, S., & Reiberger, T. (2018) Assessment of microplastic concentrations in human stool. Medical University of Vienna, UEG Week Conference, Vienna.
  18. Syvitski, J. P. M., Vörösmarty, C. J., Kettner, A. J., & Green, P. (2005). Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science, 308, 376–380.CrossRefGoogle Scholar
  19. Veron, J. E. N., Hoegh-Guldberg, O., Lenton, T. M., Lough, J. M., Obura, D. O., Pearce-Kelly, P., Sheppard, C. R. C., Spalding, M., Stafford-Smith, M. G., & Rogers, A. D. (2009). The coral reef crisis: The critical importance of <350 ppm CO2. Marine Pollution Bulletin, 58, 1428–1436.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Peter Townsend Harris
    • 1
  1. 1.GRID-ArendalArendalNorway

Personalised recommendations