Advertisement

Frozen Ocean: Ice Ages and Climate Change

  • Peter Townsend Harris
Chapter

Abstract

The world has two major ice sheets – in Antarctica and Greenland – but their histories are completely different. The Antarctic ice sheet evolved over 30 million years ago when South America separated from Antarctica to create the Drake Passage. This allowed the Circumpolar Current to form, isolating Antarctica and turning it into the coldest, highest, and driest continent. Greenland is the last major remnant of continental ice sheets that have grown over large parts of North America and Europe repeatedly for the last 2 million years. In this chapter, we will meet Milutin Milanković and learn about his theory for ice ages. Ice sheets over Europe and North America lowered sea level by 130 m, and when they melted, there were huge floods in Washington State in the west, as well as in Eastern Canada. The rising sea level had many consequences: it refilled the Black Sea, possibly explaining the biblical flood story. Rising sea level flooded the Gulf of Carpentaria in Australia and the Persian Gulf Oasis. All the fish, kelp, and corals living on the continental shelves today, including the Great Barrier Reef, are recent arrivals that only moved in over the last 10,000 years or so.

Keywords

Antarctic glaciation Ice-rafted debris Milutin Milanković Glacial erratic Pleistocene Ice age Milanković theory Solar insolation Ice sheet Ice shelves Sea ice Missoula Floods Lake Agassiz Younger Dryas Black Sea Noah’s flood Tidal range Great Barrier Reef 

References

  1. Barber, D. C., Dyke, A., Hillaire-Marcel, C., Jennings, A. E., Andrews, J. T., Kerwin, M. W., Bilodeau, G., McNeely, R., Southon, J., Morehead, M. D., & Gagnon, J. M. (1999). Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature, 400, 344–348.CrossRefGoogle Scholar
  2. Cooper, A. K., & O’Brien, P. E. (2004). Leg 188 synthesis: Transitions in the glacial history of the Prydz Bay region, East Antarctica, from ODP drilling. In A. K. Cooper, P. E. O’Brien, & C. Richter (Eds.), Proceedings of the ocean drilling program, scientific results (pp. 1–42). College Station: Ocean Drilling Program.Google Scholar
  3. Davies, P.J. (1974). Subsurface solution unconformities at Heron Island, Great Barrier Reef. Proceedings of the 2nd International Coral Reef Symposium, pp. 573–578.Google Scholar
  4. Davies, P. J., Symonds, P. A., Feary, D. A., & Pigram, C. J. (1987). Horizontal plate motion: A key allocyclic factor in the evolution of the great barrier reef. Science, 238, 1697–1700.CrossRefGoogle Scholar
  5. Forsberg, R., Sørensen, L., & Simonsen, S. (2017). Greenland and Antarctica ice sheet mass changes and effects on Global sea level. Surveys in Geophysics, 38(1), 89–104.CrossRefGoogle Scholar
  6. Harris, P. T., MacMillan-Lawler, M., Rupp, J., & Baker, E. K. (2014). Geomorphology of the oceans. Marine Geology, 352, 4–24.CrossRefGoogle Scholar
  7. Haug, G. H., & Tiedemann, R. (1998). Effect of the formation of the isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature, 393, 673–676.CrossRefGoogle Scholar
  8. Hays, J. D., Imbrie, J., & Shackleton, N. J. (1976). Variations in the Earth’s orbit: Pacemaker of the ice ages. Science, 194, 1121–1132.CrossRefGoogle Scholar
  9. Heinrich, H. (1988). Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years. Quaternary Research, 29, 142–152.CrossRefGoogle Scholar
  10. Hill, D. F., Griffiths, S. D., Peltier, W. R., Horton, B. P., & Törnqvist, T. E. (2011). High-resolution numerical modeling of tides in the western Atlantic, Gulf of Mexico, and Caribbean Sea during the Holocene. Journal of Geophysical Research: Oceans, 116.Google Scholar
  11. Holpley, D., Smithers, S. G., & Parnell, K. E. (2007). The geomorphology of the great barrier reef: Development, diversity and change (p. 546). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  12. Jakobsson, M., Nilsson, J., Anderson, L., Backman, J., Bjork, G., Cronin, T. M., Kirchner, N., Koshurnikov, A., Mayer, L., Noormets, R., O’Regan, M., Stranne, C., Ananiev, R., Barrientos Macho, N., Cherniykh, D., Coxall, H., Eriksson, B., Floden, T., Gemery, L., Gustafsson, O., Jerram, K., Johansson, C., Khortov, A., Mohammad, R., & Semiletov, I. (2016). Evidence for an ice shelf covering the Central Arctic Ocean during the penultimate glaciation. Nature Communications, 7.  https://doi.org/10.1038/ncomms10365.
  13. Jones, M. R., & Torgersen, T. (1988). Late quaternary evolution of Lake Carpentaria on the Australia - New Guinea continental shelf. Australian Journal of Earth Science, 35, 313–324.CrossRefGoogle Scholar
  14. Maxwell, W. G. H. (1968). Atlas of the great barrier reef (p. 258). Amsterdam: Elsevier.Google Scholar
  15. Milanković, M. (1941). Canon of insolation of the earth and its application to the problem of the ice ages (pp. 1–626). Cemian: Royal Serbian Academy Press.Google Scholar
  16. Rose, J. I. (2010). New light on human prehistory in the Arabo-Persian Gulf oasis. Current Anthropology, 51, 849–883.CrossRefGoogle Scholar
  17. Ryan, W. B. F., & Pitman, W. (1998). Noah’s flood: The new scientific discoveries about the event that changed history. New York: Simon and Schuster.Google Scholar
  18. Ryan, W. B. F., Major, C. O., Lericolais, G., & Goldstein, S. L. (2003). Catastrophic flooding of the Black Sea. Annual Review of Earth and Planetary Sciences, 31, 525–554.CrossRefGoogle Scholar
  19. Tietsche, S., Notz, D., Jungclaus, J. H., & Marotzke, J. (2011). Recovery mechanisms of Arctic summer sea ice. Geophysical Research Letters, 38.  https://doi.org/10.1029/2010GL045698.CrossRefGoogle Scholar
  20. van den Broeke, M., Box, J., Fettweis, X., Hanna, E., Noël, B., Tedesco, M., van As, D., van de Berg, W. J., & van Kampenhout, L. (2017). Greenland ice sheet surface mass loss: Recent developments in observation and modeling. Current Climate Change Reports, 3(4), 345–356.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Peter Townsend Harris
    • 1
  1. 1.GRID-ArendalArendalNorway

Personalised recommendations