The Ocean in Motion!

  • Peter Townsend Harris


The ocean is restless. It never stops moving. The famous American oceanographer Matthew Maury described the Gulf Stream ocean current as “a river in the sea,” but all the world’s rivers combined transport only a tiny fraction of the volume of ocean currents. The great ocean currents regulate the climate by transporting heat around the globe, taking warm water from the equator toward the poles and cool water from the poles toward the equator. Water evaporates from the ocean, falls as rain on the land, and returns to the sea. In this chapter we will learn about the Coriolis effect, one of the most important concepts in oceanography and its consequences for wind and ocean currents. Eddies shed from the ocean currents can reach to great depths and cause deep ocean “storms.” We will answer important questions like: What would happen if ice did not float? Why don’t icebergs drift in the same direction as the wind blows? What is storm “wave base”? What does a tsunami wave look like in the middle of the ocean? Why are there new beaches forming on the Arctic coast? What has caused Antarctic sea ice “factories” to close down?


Hydrological cycle Salinity Ooid Limiting nutrient Matthew Fontaine Maury Flying cloud Sverdrup Gulf Stream Circumpolar Current East Australia Current Rhodolith Hadley cells Coriolis effect Benthic storm Ekman transport Fetch Significant wave height Storm wave base Tsunami Great ocean conveyor Mertz glacier Aurora Australis Bottom water Polynya 


  1. Broecker, W. S. (1991). The great ocean conveyor. Oceanography, 4, 79–89.CrossRefGoogle Scholar
  2. Broecker, W. S., Peacock, S. L., Walker, S., Weiss, R., Fahrbach, E., Schroeder, M., Mikolajewicz, U., Heinze, C., Key, R., Peng, T. H., & Rubin, S. (1998). How much deep water is formed in the Southern Ocean? Journal of Geophysical Research, 103, 15,833–815,843.CrossRefGoogle Scholar
  3. Dai, A., & Trenberth, K. E. (2002). Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. Journal of Hydrometeorology, 3, 660–687.CrossRefGoogle Scholar
  4. de Lavergne, C., Madec, G., Capet, X., Maze, G., & Roquet, F. (2016). Getting to the bottom of the ocean. Nature Geoscience, 9, 857–858.CrossRefGoogle Scholar
  5. Dysthe, K., Krogstad, H. E., & Müller, P. (2008). Oceanic rogue waves. Annual Review of Fluid Mechanics, 40, 287–310.CrossRefGoogle Scholar
  6. Ekman, V. W. (1905). On the influence of the Earth’s rotation on ocean currents. Arkiv för matematik, astronomi och fysik, 2, 1–52.Google Scholar
  7. Harris, P. T., & Coleman, R. (1998). Estimating global shelf sediment mobility due to swell waves. Marine Geology, 150, 171–177.CrossRefGoogle Scholar
  8. Harris, P. T., Tsuji, Y., Marshall, J. F., Davies, P. J., Honda, N., & Matsuda, H. (1996). Sand and rhodolith-gravel entrainment on the mid- to outer-shelf under a western boundary current: Fraser Island continental shelf, eastern Australia. Marine Geology, 129, 313–330.CrossRefGoogle Scholar
  9. Harris, P. T., Brancolini, G., Armand, L., Busetti, M., Beaman, R. J., Giorgetti, G., Prestie, M., & Trincardi, F. (2001). Continental shelf drift deposit indicates non-steady state Antarctic bottom water production in the Holocene. Marine Geology, 179, 1–8.CrossRefGoogle Scholar
  10. Hoekstra, A. Y., & Mekonnen, M. M. (2012). The water footprint of humanity. Proceedings of the National Academy of Sciences, 109, 3232–3237.CrossRefGoogle Scholar
  11. Hollister, C. D., & McCave, I. N. (1984). Sedimentation under deep sea storms. Nature, 309, 220–225.CrossRefGoogle Scholar
  12. Johnson, G. C. (2008). Quantifying Antarctic bottom water and North Atlantic deep water volumes. Journal of Geophysical Research: Oceans, 113.
  13. Kusahara, K., Hasumi, H., & Williams, G. D. (2011). Impact of the Mertz glacier tongue calving on dense water formation and export. Nature Communications, 2, 159. Scholar
  14. Levitus, S., Antonov, J. I., Boyer, T. P., Locarnini, R. A., Garcia, H. E., & Mishonov, A. V. (2009). Global Ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophysical Research Letters, 36(7). Scholar
  15. Massom, R., Michael, K., Harris, P. T., & Potter, M. J. (1998). The distribution and formative processes of latent heat polynyas in East Antarctica. Annals of Glaciology, 27, 420–426.CrossRefGoogle Scholar
  16. Maury, M. F. (1855). A physical geography of the sea (310 pp). New York: Harper & Brothers.CrossRefGoogle Scholar
  17. Miller, J. L. (2017). Ocean currents respond to climate change in unexpected ways. Physics Today, 70(1), 17–18.CrossRefGoogle Scholar
  18. Nowell, A. R. M., McCave, I. N., & Hollister, C. D. (1985). Contributions of HEBBLE to understanding marine sedimentation. Marine Geology, 66, 397–409.CrossRefGoogle Scholar
  19. Overeem, I., Anderson, R. S., Wobus, C. W., Clow, G. D., Urban, F. E., & Matell, N. (2011). Sea ice loss enhances wave action at the Arctic coast. Geophysical Research Letters, 38(17).Google Scholar
  20. Perry, G. D., Duffy, P. B., & Miller, N. L. (1996). An extended data set of river discharges for validation of general circulation models. Journal of Geophysical Research: Atmospheres, 101, 21339–21349.CrossRefGoogle Scholar
  21. Shedd, J. A. (1928). Salt from my attic (p. 63). Mosher Press.Google Scholar
  22. Turekian, K. K. (2001). Origin of the oceans. In: J. H Steele, S. E. Thorpe, K. K. Turekian (Eds.), Marine chemistry and geochemistry (pp. 2055–2058). Academic Press.Google Scholar
  23. Young, I. R., Zieger, S., & Babanin, A. V. (2011). Global trends in wind speed and wave height. Science, 332(6028), 451–455.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Peter Townsend Harris
    • 1
  1. 1.GRID-ArendalArendalNorway

Personalised recommendations