Role of Conducting Polymer Nanostructures in Advanced Photocatalytic Applications

  • D. Duraibabu
  • Y. Sasikumar
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 34)


Conducting polymers (CPs) have been widely used as electronic materials, electromagnetic devices, electrocatalysts, and photocatalysts in energy-related systems, sensors, and environmental protection. Generally, their high conductivity, promising catalytic activity, and electrochemical mechanical and optical properties are considered to be unique. In addition, CPs are cheap and convenient to prepare on a large scale via chemical or electrochemical techniques. Recently, CPs as photosensitizers have been proven to immensely enhance photodegradation by their excellent photocatalytic activity under both ultraviolet light and natural sunlight irradiation, which is not possible using semiconductors alone. Current advanced techniques consist of synthesis in a new method for CPs, such as high-performance applications. These applications are based on CP-based inherent nanocomposite catalysts derived from heteroatom-doped carbon catalysts. This chapter introduces the mechanisms of catalysis with practical importance.


Conducting polymers Conjugated polymers Nanostructure Photocatalysis Mechanism Photosensitizer Applications 


  1. Agarwala S, Ho GW (2012) Self-ordering anodized nanotubes: enhancing the performance by surface plasmon for dye-sensitized solar cell. J Solid State Chem 189:101–107. CrossRefGoogle Scholar
  2. Agarwala S, Kevin M, Wong ASW, Peh CKN, Thavasi V, Ho GW (2010) Mesophase ordering of TiO2 film with high surface area and strong light harvesting for dye-sensitized solar cell. ACS Appl Mater Interfaces 2:1844–1850. CrossRefGoogle Scholar
  3. Bella F, Lamberti A, Bianco S, Tresso E, Gerbaldi C, Pirri CF (2016) Floating photovoltaics: floating, flexible polymeric dye-sensitized solar-cell architecture: the way of near-future photovoltaics. Adv Mater Technol 1:1600002. CrossRefGoogle Scholar
  4. Bella F, Galliano S, Falco M, Viscardi G, Barolo C, Grätzel M, Gerbaldi C (2017) Approaching truly sustainable solar cells by the use of water and cellulose derivatives. Green Chem 19:1043–1051. CrossRefGoogle Scholar
  5. Bhadra S, Khastgir D, Singha NK, Lee JH (2009) Progress in preparation, processing and applications of polyaniline. Prog Polym Sci 34(8):783–810. CrossRefGoogle Scholar
  6. Borges ME, Sierra M, Cuevas E, García RD, Esparza P (2016) Photocatalysis with solar energy: sunlight-responsive photocatalyst based on TiO2 loaded on a natural material for wastewater treatment. Sol Energy 135:527–535. CrossRefGoogle Scholar
  7. Clavero C (2014) Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat Photonics 8:95–103. CrossRefGoogle Scholar
  8. Cosnier S, Holzinger M (2011) Electrosynthesized polymers for biosensing. Chem Soc Rev 40:2146–2156. CrossRefGoogle Scholar
  9. Diebold U (2011) Photocatalysts: closing the gap. Nat Chem 3(4):271–272. CrossRefGoogle Scholar
  10. Ding X, Han BH (2015) Metallophthalocyanine-based conjugated microporous polymers as highly efficient photosensitizers for singlet oxygen generation. Angew Chem Int Ed Engl 54(22):6536–6539. CrossRefGoogle Scholar
  11. Feizpoor S, Yangjeh AH, Vadivel S (2017) Novel TiO2/Ag2CrO4 nanocomposites: efficient visible-light-driven photocatalysts with n–n heterojunctions. J Photochem Photobiol A Chem 341:57–68. CrossRefGoogle Scholar
  12. Gerard M, Chaubey A, Malhotra BD (2002) Application of conducting polymers to biosensors. Biosens Bioelectron 17(5):345–359. CrossRefGoogle Scholar
  13. Gerosa M, Sacco A, Scalia A, Bella F, Angelica C, Quaglio M, Tresso E, Bianco S (2016) Toward totally flexible dye-sensitized solar cells based on titanium grids and polymeric electrolyte. IEEE J Photovolt 6:498–505. CrossRefGoogle Scholar
  14. Ghasimi S, Lfester K, Zhang KAI (2016) Water compatible conjugated microporous polyazulene networks as visible-light photocatalysts in aqueous medium. Chem Cat Chem 8:694–698. CrossRefGoogle Scholar
  15. Ghosh S, Kouamé NA, Ramos L, Remita S, Dazzi A, Deniset-Besseau A, Beaunier P, Goubard F, Aubert PH, Remita H (2015a) Visible-light active conducting polymer nano structures with superior photocatalytic activity. Nat Mater 14:505–511. CrossRefGoogle Scholar
  16. Ghosh S, Kouamé NA, Ramos L, Remita S, Dazzi A, Deniset-Besseau A, Beaunier P, Goubard F, Aubert PH, Remita H (2015b) Conducting polymer nanostructures for photocatalysis under visible light. Nat Mater 14:505–511. CrossRefGoogle Scholar
  17. Ghosh S, Mallik AK, Basu Rajendra N (2018) Enhanced photocatalytic activity and photoresponse of poly(3,4-ethylenedioxythiophene) nanofibers decorated with gold nanoparticle under visible light. Sol Energy 159:548–560. CrossRefGoogle Scholar
  18. Gnanasekaran L, Hemamalini R, Ravichandran K (2015) Synthesis and characterization of TiO2 quantum dots for photocatalytic application. J Saudi Chem Soc 19:589–594. CrossRefGoogle Scholar
  19. Gnanasekaran L, Hemamalini R, Saravanan R, Ravichandran K, Gracia F, Gupta VK (2016) Intermediate state created by dopant ions (Mn, co and Zr) into TiO2 nanoparticles for degradation of dyes under visible light. J Mol Liq 223:652–659. CrossRefGoogle Scholar
  20. Gospodinova N, Terlemezyan L (1998) Conducting polymers prepared by oxidative polymerization: polyaniline. Prog Polym Sci 23(8):1443–1484. CrossRefGoogle Scholar
  21. Goswami DY, Vijayaraghavan S, Lu S, Tamm G (2004) New and emerging developments in solar energy. Sol Energy 76:33–43. CrossRefGoogle Scholar
  22. Grabowska E, Zaleska A, Sorgues S, Kunst M, Etcheberry A, Colbeau-Justin C, Remita H (2013) Modification of titanium (IV) dioxide with small silver nanoparticles:application in photocatalysis. J Phys Chem C 117:1955–1962. CrossRefGoogle Scholar
  23. Guo N, Liang Y, Lan S, Liu L, Zhang J, Ji GGan S (2014) Microscale hierarchical three-dimensional flowerlike TiO2/PANI composite: synthesis, characterization, and its remarkable photocatalytic activity on organic dyes under UV-light and sunlight irradiation. J Phys Chem C 118(32):18343–18355. CrossRefGoogle Scholar
  24. Hao F, Dong P, Luo Q, Li JB, Lou J, Lin H (2013) Recent advances in alternative cathode materials for iodine-free dye-sensitized solar cells. Energy Environ Sci 6:2003–2019. CrossRefGoogle Scholar
  25. Hatchett DW, Josowicz M (2008) Composites of intrinsically conducting polymers as sensing nanomaterials. Chem Rev 108(2):746–769. CrossRefGoogle Scholar
  26. Heeger AJ (2001) Semiconducting and metallic polymers: the fourth generation of polymeric materials. J Phys Chem B 105(36):8475–8491. CrossRefGoogle Scholar
  27. Heeger AJ (2010) Semiconducting polymers: the third generation. Chem Soc Rev 39(7):2354–2371. CrossRefGoogle Scholar
  28. Heinze J, Frontana-Uribe BA, Ludwigs S (2010) Electrochemistry of conducting polymers--persistent models and new concepts. Chem Rev 110(8):4724–4471. CrossRefGoogle Scholar
  29. Heitzer HM, Savoie BM, Marks TJ, Ratner MA (2014) Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angew Chem Int Ed 53:7456–7460. CrossRefGoogle Scholar
  30. Henry D, Li TD, Kane RB (2009) One-dimensional conducting polymer nanostructures: bulk synthesis and applications. Adv Mater 21:1487–1499. CrossRefGoogle Scholar
  31. Hou Y, Wen ZH, Cui SM, Guo XR, Chen JH (2013) Constructing 2D porous graphitic C3N4nanosheets/nitrogen-doped graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical activity. Adv Mater 25(43):6291–6297. CrossRefGoogle Scholar
  32. Huang J, Kaner RB (2004) A general chemical route to polyaniline nanofibers. J Am Chem Soc 126(3):851–855. CrossRefGoogle Scholar
  33. Huang J, Virji S, Weiller BH, Kaner RB (2003) Polyaniline nanofibers: facile synthesis and chemical sensors. J Am Chem Soc 125(2):314–315. CrossRefGoogle Scholar
  34. Kang ET, Neoh KG, Tan KL (1998) Polyaniline: a polymer with many interesting redox states. Prog Polym Sci 23(2):277–324. CrossRefGoogle Scholar
  35. Kumar A, Kumar A, Sharma G et al (2017a) Solar-driven photodegradation of 17-β-estradiol and ciprofloxacin from waste water and CO2 conversion using sustainable coal-char/polymeric-g-C3N4/RGO metal-free nano-hybrids. New J Chem 41:10208–10224. CrossRefGoogle Scholar
  36. Kumar A, Shalini SG et al (2017b) Facile hetero-assembly of superparamagnetic Fe3O4/BiVO4 stacked on biochar for solar photo-degradation of methyl paraben and pesticide removal from soil. J Photochem Photobiol A Chem 337:118–131. CrossRefGoogle Scholar
  37. Laslau C, Zujovic Z, Travas-Sejdic J (2010) Theories of polyaniline nanostructure self-assembly: towards an expanded, comprehensive multi-layer theory (MLT). Prog Polym Sci 35(12):1403–1419. CrossRefGoogle Scholar
  38. Li C, Bai H, Shi GQ (2009) Conducting polymer nanomaterials: electrosynthesis and applications. Chem Soc Rev 38:2397–2409. CrossRefGoogle Scholar
  39. Li YB, Zhang HM, Liu PR, Wang D, Li Y, Zhao HJ (2013) Cross-linked g-C3N4/rGO nanocomposites with tunable band structure and enhanced visible light photocatalytic activity. Small 9(19):3336–3344. CrossRefGoogle Scholar
  40. Lin LL, Ou HH, Zhang YF, Wang XC (2016) Tri-s-triazine-based crystalline graphitic carbon nitrides for highly efficient hydrogen evolution Photocatalysis. ACS Catal 6(6):3921–3931. CrossRefGoogle Scholar
  41. Liu J, Liu Y, Liu N, Han Y, Zhang X, Huang H, Lifshitz Y, Lee ST, Zhong J, Kang Z (2015) Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347:970–974. CrossRefGoogle Scholar
  42. Liu D, Wang J, Bai X, Zong R, Zhu Y (2016) Self-assembled PDINH supramolecular system for photocatalysis under visible light. Adv Mater 28:7284–7290. CrossRefGoogle Scholar
  43. Lotsch BV, Döblinger M, Sehnert J, Seyfarth L, Senker J, Oeckler O, Schnick W (2007) Unmasking melon by a complementary approach employing electron diffraction, solid- state NMR spectroscopy, and theoretical calculations-structural characterization of a carbon nitride polymer. Chemistry 13(17):4969–4980. CrossRefGoogle Scholar
  44. Lu XF, Zhang WJ, Wang C, Wen TC, Wei Y (2010) One-dimensional conducting polymer nanocomposites: synthesis, properties and applications. Prog Polym Sci 36:671–712. CrossRefGoogle Scholar
  45. MacDiarmid AG (2001) Synthetic metals: a novel role for organicpolymers. Angew Chem Int Ed 40(14):2581–2590. CrossRefGoogle Scholar
  46. Mackiewicz N, Gravel E, Garofalakis A, Ogier J, John J, Dupont DM, Gombert K, Tavitian B, Doris E, Ducongé F (2011) Tumor-targeted polydiacetylene micelles for in vivo imaging and drug delivery. Small 7(19):2786–2792. CrossRefGoogle Scholar
  47. Maeda K (2013) Z-scheme water splitting using two different semiconductor Photocatalysts. ACS Catal 3(7):1486–1503. CrossRefGoogle Scholar
  48. Mamba G, Mbianda XY, Mishra AK (2015) Photocatalytic degradation of diazo dye naphthol blue black in water using MWCNT/Gd, N, S-TiO2 nanocomposite under simulated solar light. J Environ Sci 33:219–228. CrossRefGoogle Scholar
  49. Palaniappan S, John A (2008) Polyaniline materials by emulsion polymerization pathway. Prog Polym Sci 33(7):732–758. CrossRefGoogle Scholar
  50. Pathania D, Sharma G, Kumar A et al (2015) Combined sorptional–photocatalytic remediation of dyes by polyaniline Zr(IV) selenotungstophosphate nanocomposite. Toxicol Environ Chem 97:526–537. CrossRefGoogle Scholar
  51. Pena dos Santos E, Tokumoto MS, Surendran G, Remita H, Bourgaux C, Dieudonné P, Prouzet E, Ramos L (2005) Existence and stability of new Nanoreactors: highly swollen hexagonal liquid crystals. Langmuir 21(10):4362–4369. CrossRefGoogle Scholar
  52. Pud A, Ogurtsov N, Korzhenko A, Shapoval G (2003) Some aspects of preparation methods and properties of polyaniline blends and composites with organic polymers. Prog Polym Sci 28(12):1701–1753. CrossRefGoogle Scholar
  53. Radhakrishnan S, Sumathi C, Dharuman V, Wilson J (2013) Gold nanoparticles functionalized poly(3,4-ethylenedioxythiophene) thin film for highly sensitive label free DNA detection. Anal Methods 5:684–689. CrossRefGoogle Scholar
  54. Samai B, Bhattacharya SC (2018) Conducting polymer supported cerium oxide nanoparticle: enhanced photocatalytic activity for waste water treatment. Mater Chem Phys 220:171–181. CrossRefGoogle Scholar
  55. Scalia A, Bella F, Lamberti A, Bianco S, Gerbaldi C, Tresso E, Pirri CF (2017) A flexible and portable power pack by solid-state supercapacitor and dye-sensitized solar cell integration. J Power Sources 359:311–321. CrossRefGoogle Scholar
  56. Schaming D, Costa-Coquelard C, Sorgues S, Ruhlmann L, Lampre I (2010) Photocatalytic reduction of Ag2SO4 by electrostatic complexes formed by tetracationic zinc porphyrins and tetracobalt Dawson-derived sandwich polyanion. Appl Catal A 373(1–2):160–167. CrossRefGoogle Scholar
  57. Schwab MG, Hamburger M, Feng XL, Shu J, Spiess HW, Wang XC, Antonietti M, Mgllen K (2010) Photocatalytic hydrogen evolution through fully conjugated poly(azomethine) networks. Chem Commun 46:8932–8934. CrossRefGoogle Scholar
  58. Schwarz C, Bässler H, Bauer I, Koenen JM, Preis E, Scherf U, Köhler A (2012) Does conjugation help exciton dissociation? A study on poly(p-phenylene)s in planar heterojunctions with C60 or TNF. Adv Mater 24(7):922–925. CrossRefGoogle Scholar
  59. Schwarz C, Tscheuschner S, Frisch J, Winkler S, Koch N, Bässler H, Köhler A (2013) Role of the effective mass and interfacial dipoles on exciton dissociation in organic donor-acceptor solar cells. Phys Rev B 87(15):155205–155213. CrossRefGoogle Scholar
  60. Stejskal J, Sapurina I, Trchova M (2010) Polyaniline nanostructures and the role of aniline oligomers in their formation. Prog Polym Sci 5(12):1420–1481. CrossRefGoogle Scholar
  61. Strenger-Smith JD (1998) Intrinsically electrically conducting polymers. Synthesis, characterization and their applications. Prog Polym Sci 23(1):57–79. CrossRefGoogle Scholar
  62. Sui Y, Liu J, ZhangY TX, Chen W (2013) Dispersed conductive polymer nanoparticles on graphitic carbon nitride for enhanced solar-driven hydrogen evolution from pure water. Nanoscale 5:9150–9155. CrossRefGoogle Scholar
  63. Tacca A, Meda L, Marra G, Savoini A, Caramori S, Cristino V, Bignozzi CA, Pedro VG, Boix PP, Gimenez S, Bisquert J (2012) Photoanodes based on nanostructured WO3 for water splitting. Chem Phys Chem 13:3025–3034. CrossRefGoogle Scholar
  64. Wan MX (2009) Some issues related to polyaniline micro−/nanostructures. Macromol Rapid Commun 30:963–975. CrossRefGoogle Scholar
  65. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80. CrossRefGoogle Scholar
  66. Wang S, Huang Z, Wang J, Li Y, Tan Z (2012) Thermal stability of several polyaniline/rare earth oxide composites (I): polyaniline/CeO2 composite. J Therm Anal Calorim 107(3):1199–1201. CrossRefGoogle Scholar
  67. Wang D, Zhang Y, Chen W (2014) A novel nickel–thiourea–triethylamine complex adsorbed on graphitic C3N4 for low-cost solar hydrogen production. Chem Commun 50:1754–1756. CrossRefGoogle Scholar
  68. Wang ZJ, Ghasimi S, Landfester K, Zhang KAI (2015) Molecular structural Design of Conjugated Microporous Poly(Benzooxadiazole) networks for enhanced photocatalytic activity with visible light. Adv Mater 27:6265–6270. CrossRefGoogle Scholar
  69. Wang M, Ye M, Locozzia J, Lin C, Lin Z (2016) Plasmon-mediated solar energy conversion via photocatalysis in noble metal/semiconductor composites. Adv Sci 3(6):1600024 1–14. CrossRefGoogle Scholar
  70. Wen C, Hasegawa K, Kanbara T, Kagaya S, Yamamoto TJ (2000) Visible light-induced catalytic degradation of iprobenfos fungicide by poly(3-octylthiophene-2,5-diyl) film. J Photochem Photobiol A: Chem 133(1–2):59–66. CrossRefGoogle Scholar
  71. Weng L, Zhang H, Govorov AO, Ouyang M (2014) Hierarchical synthesis of noncentrosymmetric hybrid nanostructures, enabled plasmon-driven photocatalysis. Nat Commun 2(5):4602–4792. CrossRefGoogle Scholar
  72. Winther-Jensen B, Mac Farlane DR (2011) New generation, metal-free electrocatalysts for fuelcells, solar cells and water splitting. Energy Environ Sci 4:2790–2798. CrossRefGoogle Scholar
  73. Xu H, Gao J, Jiang DL (2015) Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nat Chem 7:905–912. CrossRefGoogle Scholar
  74. Xue C, Hans Q, Wang Y, Wu J, Wen TT, Wang RY, Hong JL, Zhou XM, Jiang HJ (2013) Amperometric detection of dopamine in human serum by electrochemical sensor based on gold nanoparticles doped molecularly imprinted polymers. Biosens Bioelectron 49:199–203. CrossRefGoogle Scholar
  75. Yan H, Huang Y (2011) Polymer composites of carbon nitride and poly(3-hexylthiophene) to achieve enhanced hydrogen production from water under visible light. Chem Commun 47:4168–4170. CrossRefGoogle Scholar
  76. Yanagida S, Kabumoto A, Mizumoto K, Pac C, Yoshino K (1985) Poly(p-phenylene)-catalysed photoreduction of water to hydrogen. J Chem Soc Chem Commun 0:474–475. CrossRefGoogle Scholar
  77. Young KJ, Martini LA, Milot RL, SnoebergerIII RC, Batista VS, Schmuttenmaer CA, CrabtreeGary RH, Brudvig W (2012) Light-driven water oxidation for solar fuels. Coord Chem Rev 256(21–22):2503–2520. CrossRefGoogle Scholar
  78. Yuan XX, Ding XL, Wang CY, Ma ZF (2013) Use of polypyrrole in catalysts for low temperature fuel cells. Energy Environ Sci 6:1105–1124. CrossRefGoogle Scholar
  79. Yun SN, Hagfeldt A, Ma TL (2014) Pt-free counter electrode for dye-sensitized solar cells with high efficiency. Adv Mater 26:6210–6237. CrossRefGoogle Scholar
  80. Yusoff N, Pikumar A, Ramaraj R, Lim HN, Huang NM (2015) Gold nanoparticle based optical, electrochemical sensing of dopamine. Microchim Acta 182:2091–2114. CrossRefGoogle Scholar
  81. Zhang Q, Uchaker E, Celaria SL, Cao G (2013) Nanomaterials for energy conversion, storage. Chem Soc Rev 42:3127–3171. CrossRefGoogle Scholar
  82. Zhang S, Li J, Wang X, Huang Y, Zeng M, Xu J (2014) In situ ion exchange synthesis of strongly coupled Ag@AgCl/g-C3N4 porous nanosheets as lasmonic photocatalystfor highly efficient visible-light photocatalysis. ACS Appl Mater Interfaces 6(24):22116–22125. CrossRefGoogle Scholar
  83. Zhang P, Wang T, Gong J (2015) Mechanistic understanding of the plasmonic enhancement for solar water splitting. Adv Mater 27:5328–5342. CrossRefGoogle Scholar
  84. Zhang G, Lami V, Rominger F, Vaynzof Y, Mastalerz M (2016a) Rigid conjugated twisted Truxene dimers and trimers as Electron acceptors. Angew Chem Int Ed 55:3977–3981. CrossRefGoogle Scholar
  85. Zhang G, Lan ZA, Wang X (2016b) Conjugated polymers: catalysts for photocatalytic hydrogen evolution. Angew Chem Int Ed Engl 55(51):15712–15727. CrossRefGoogle Scholar
  86. Zhang JY, Xiao FX, Xiao GC, Liu B (2016c) Linker-assisted assembly of 1D TiO2 nanobelts/3D CdS nanospheres hybrid heterostructure as efficient visible light photocatalyst. Appl Catal A-Gen 521:50–56. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • D. Duraibabu
    • 1
  • Y. Sasikumar
    • 2
  1. 1.The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and EngineeringSun Yat-Sen UniversityGuangzhouPeople’s Republic of China
  2. 2.Laboratory of Experimental and Applied Physics (LAFEA), Centro Federal de Educação Tecnológica (CEFET/RJ), Celso Suckow da Fonseca, Maracanã CampusRio de JaneiroBrazil

Personalised recommendations