Advertisement

Genetic and Environmental Risk Factors for Kidney Stones

  • Hala YamoutEmail author
  • Seth Goldberg
Chapter
Part of the Nutrition and Health book series (NH)

Abstract

Risk factors for kidney stones include genetic and environmental factors. An underlying genetic condition should be suspected in those diagnosed at a young age or with recurrent or bilateral disease. Most genetic defects increase production or excretion of lithogenic components, while others alter urinary pH. Genetic alterations cause hypercalciuria mostly by decreasing calcium resorption, thereby increasing the risk of calcium-based stones. Hyperoxaluria can be caused by several genetic factors related to increased oxalate production and excretion. There are two major genes responsible for the development of cystinuria and genotype is now used for classification. Adenine phosphoribosyltransferase (APRT) deficiency is an autosomal recessive disease caused by deficiency in the enzyme responsible for adenine metabolism that is associated with both kidney stones and renal failure.

Environmental factors such as warmer climate, type of work, socioeconomic class, and geography may cooperate with underlying genetic factors to contribute to the development of kidney stones.

Keywords

Genetics Environmental factors Adenine phosphoribosyltransferase (APRT) deficiency Cystinuria Hypercalciuria Hyperoxaluria 

References

  1. 1.
    Scales CD Jr, Smith AC, Hanley JM, Saigal CS. Prevalence of kidney stones in the United States. Eur Urol. 2012;62(1):160–5.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Rumsby G. Genetic defects underlying renal stone disease. Int J Surg. 2016;36(Pt D):590–5.PubMedGoogle Scholar
  3. 3.
    Moe OW, Bonny O. Genetic hypercalciuria. J Am Soc Nephrol. 2005;16(3):729–45.PubMedGoogle Scholar
  4. 4.
    Arcidiacono T, Mingione A, Macrina L, Pivari F, Soldati L, Vezzoli G. Idiopathic calcium nephrolithiasis: a review of pathogenic mechanisms in the light of genetic studies. Am J Nephrol. 2014;40(6):499–506.PubMedGoogle Scholar
  5. 5.
    Wang SS, Devuyst O, Courtoy PJ, Wang XT, Wang H, Wang Y, et al. Mice lacking renal chloride channel, CLC-5, are a model for Dent’s disease, a nephrolithiasis disorder associated with defective receptor-mediated endocytosis. Hum Mol Genet. 2000;9(20):2937–45.PubMedGoogle Scholar
  6. 6.
    Devuyst O, Jouret F, Auzanneau C, Courtoy PJ. Chloride channels and endocytosis: new insights from Dent’s disease and ClC-5 knockout mice. Nephron Physiol. 2005;99(3):69–73.Google Scholar
  7. 7.
    Gamba G, Friedman PA. Thick ascending limb: the Na (+):K (+):2Cl (−) co-transporter, NKCC2, and the calcium-sensing receptor, CaSR. Pflugers Arch. 2009;458(1):61–76.PubMedGoogle Scholar
  8. 8.
    Pearce SH, Williamson C, Kifor O, Bai M, Coulthard MG, Davies M, et al. A familial syndrome of hypocalcemia with hypercalciuria due to mutations in the calcium-sensing receptor. N Engl J Med. 1996;335(15):1115–22.PubMedGoogle Scholar
  9. 9.
    Vezzoli G, Arcidiacono T, Paloschi V, Terranegra A, Biasion R, Weber G, et al. Autosomal dominant hypocalcemia with mild type 5 Bartter syndrome. J Nephrol. 2006;19(4):525–8.PubMedGoogle Scholar
  10. 10.
    Weber S, Schneider L, Peters M, Misselwitz J, Ronnefarth G, Boswald M, et al. Novel paracellin-1 mutations in 25 families with familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J Am Soc Nephrol. 2001;12(9):1872–81.PubMedGoogle Scholar
  11. 11.
    Thorleifsson G, Holm H, Edvardsson V, Walters GB, Styrkarsdottir U, Gudbjartsson DF, et al. Sequence variants in the CLDN14 gene associate with kidney stones and bone mineral density. Nat Genet. 2009;41(8):926–30.PubMedGoogle Scholar
  12. 12.
    Jang HR, Kim S, Heo NJ, Lee JH, Kim HS, Nielsen S, et al. Effects of thiazide on the expression of TRPV5, calbindin-D28K, and sodium transporters in hypercalciuric rats. J Korean Med Sci. 2009;24(Suppl):S161–9.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Mayan H, Munter G, Shaharabany M, Mouallem M, Pauzner R, Holtzman EJ, et al. Hypercalciuria in familial hyperkalemia and hypertension accompanies hyperkalemia and precedes hypertension: description of a large family with the Q565E WNK4 mutation. J Clin Endocrinol Metab. 2004;89(8):4025–30.PubMedGoogle Scholar
  14. 14.
    Gambaro G, Vezzoli G, Casari G, Rampoldi L, D’Angelo A, Borghi L. Genetics of hypercalciuria and calcium nephrolithiasis: from the rare monogenic to the common polygenic forms. Am J Kidney Dis. 2004;44(6):963–86.PubMedGoogle Scholar
  15. 15.
    Vasudevan V, Samson P, Smith AD, Okeke Z. The genetic framework for development of nephrolithiasis. Asian J Urol. 2017;4(1):18–26.PubMedGoogle Scholar
  16. 16.
    Zuckerman JM, Assimos DG. Hypocitraturia: pathophysiology and medical management. Rev Urol. 2009;11(3):134–44.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Higashihara E, Nutahara K, Tago K, Ueno A, Niijima T. Medullary sponge kidney and renal acidification defect. Kidney Int. 1984;25(2):453–9.PubMedGoogle Scholar
  18. 18.
    Falchetti A, Marini F, Luzi E, Giusti F, Cavalli L, Cavalli T, et al. Multiple endocrine neoplasia type 1 (MEN1): not only inherited endocrine tumors. Genet Med. 2009;11(12):825–35.PubMedGoogle Scholar
  19. 19.
    Chines A, Petersen DJ, Schranck FW, Whyte MP. Hypercalciuria in children severely affected with osteogenesis imperfecta. J Pediatr. 1991;119(1 Pt 1):51–7.PubMedGoogle Scholar
  20. 20.
    Mohebbi N, Ferraro PM, Gambaro G, Unwin R. Tubular and genetic disorders associated with kidney stones. Urolithiasis. 2017;45(1):127–37.PubMedGoogle Scholar
  21. 21.
    Hoppe B. An update on primary hyperoxaluria. Nat Rev Nephrol. 2012;8(8):467–75.PubMedGoogle Scholar
  22. 22.
    Hoyer-Kuhn H, Kohbrok S, Volland R, Franklin J, Hero B, Beck BB, et al. Vitamin B6 in primary hyperoxaluria I: first prospective trial after 40 years of practice. Clin J Am Soc Nephrol. 2014;9(3):468–77.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Bergstralh EJ, Monico CG, Lieske JC, Herges RM, Langman CB, Hoppe B, et al. Transplantation outcomes in primary hyperoxaluria. Am J Transplant. 2010;10(11):2493–501.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Chlebeck PT, Milliner DS, Smith LH. Long-term prognosis in primary hyperoxaluria type II (L-glyceric aciduria). Am J Kidney Dis. 1994;23(2):255–9.PubMedGoogle Scholar
  25. 25.
    Cramer SD, Ferree PM, Lin K, Milliner DS, Holmes RP. The gene encoding hydroxypyruvate reductase (GRHPR) is mutated in patients with primary hyperoxaluria type II. Hum Mol Genet. 1999;8(11):2063–9.PubMedGoogle Scholar
  26. 26.
    Williams EL, Bockenhauer D, van’t Hoff WG, Johri N, Laing C, Sinha MD, et al. The enzyme 4-hydroxy-2-oxoglutarate aldolase is deficient in primary hyperoxaluria type 3. Nephrol Dial Transplant. 2012;27(8):3191–5.PubMedGoogle Scholar
  27. 27.
    Thomas K, Wong K, Withington J, Bultitude M, Doherty A. Cystinuria-a urologist’s perspective. Nat Rev Urol. 2014;11(5):270–7.PubMedGoogle Scholar
  28. 28.
    Pereira DJ, Schoolwerth AC, Pais VM. Cystinuria: current concepts and future directions. Clin Nephrol. 2015;83(3):138–46.PubMedGoogle Scholar
  29. 29.
    Saravakos P, Kokkinou V, Giannatos E. Cystinuria: current diagnosis and management. Urology. 2014;83(4):693–9.PubMedGoogle Scholar
  30. 30.
    Dello SL, Pras E, Pontesilli C, Beccia E, Ricci-Barbini V, de Sanctis L, et al. Comparison between SLC3A1 and SLC7A9 cystinuria patients and carriers: a need for a new classification. J Am Soc Nephrol. 2002;13(10):2547–53.Google Scholar
  31. 31.
    Font-Llitjos M, Jimenez-Vidal M, Bisceglia L, Di Perna M, de Sanctis L, Rousaud F, et al. New insights into cystinuria: 40 new mutations, genotype-phenotype correlation, and digenic inheritance causing partial phenotype. J Med Genet. 2005;42(1):58–68.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Chillaron J, Font-Llitjos M, Fort J, Zorzano A, Goldfarb DS, Nunes V, et al. Pathophysiology and treatment of cystinuria. Nat Rev Nephrol. 2010;6(7):424–34.PubMedGoogle Scholar
  33. 33.
    Assimos DG, Leslie SW, Ng C, Streem SB, Hart LJ. The impact of cystinuria on renal function. J Urol. 2002;168(1):27–30.PubMedGoogle Scholar
  34. 34.
    Nasr SH, Sethi S, Cornell LD, Milliner DS, Boelkins M, Broviac J, et al. Crystalline nephropathy due to 2,8-dihydroxyadeninuria: an under-recognized cause of irreversible renal failure. Nephrol Dial Transplant. 2010;25(6):1909–15.PubMedGoogle Scholar
  35. 35.
    Bollee G, Dollinger C, Boutaud L, Guillemot D, Bensman A, Harambat J, et al. Phenotype and genotype characterization of adenine phosphoribosyltransferase deficiency. J Am Soc Nephrol. 2010;21(4):679–88.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Runolfsdottir HL, Palsson R, Agustsdottir IM, Indridason OS, Edvardsson VO. Kidney disease in adenine phosphoribosyltransferase deficiency. Am J Kidney Dis. 2016;67(3):431–8.PubMedGoogle Scholar
  37. 37.
    Stamatelou KK, Francis ME, Jones CA, Nyberg LM, Curhan GC. Time trends in reported prevalence of kidney stones in the United States: 1976–1994. Kidney Int. 2003;63(5):1817–23.PubMedGoogle Scholar
  38. 38.
    Fakheri RJ, Goldfarb DS. Ambient temperature as a contributor to kidney stone formation: implications of global warming. Kidney Int. 2011;79(11):1178–85.PubMedGoogle Scholar
  39. 39.
    Geraghty RM, Proietti S, Traxer O, Archer M, Somani BK. Worldwide impact of warmer seasons on the incidence of renal colic and kidney stone disease: evidence from a systematic review of literature. J Endourol. 2017;31(8):729–35.PubMedGoogle Scholar
  40. 40.
    Eisner BH, Sheth S, Herrick B, Pais VM Jr, Sawyer M, Miller N, et al. The effects of ambient temperature, humidity and season of year on urine composition in patients with nephrolithiasis. BJU Int. 2012;110(11 Pt C):E1014–7.PubMedGoogle Scholar
  41. 41.
    Chen YY, Roseman JM, DeVivo MJ, Huang CT. Geographic variation and environmental risk factors for the incidence of initial kidney stones in patients with spinal cord injury. J Urol. 2000;164(1):21–6.PubMedGoogle Scholar
  42. 42.
    Brikowski TH, Lotan Y, Pearle MS. Climate-related increase in the prevalence of urolithiasis in the United States. Proc Natl Acad Sci U S A. 2008;105(28):9841–6.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Soucie JM, Coates RJ, McClellan W, Austin H, Thun M. Relation between geographic variability in kidney stones prevalence and risk factors for stones. Am J Epidemiol. 1996;143(5):487–95.PubMedGoogle Scholar
  44. 44.
    Linder BJ, Rangel LJ, Krambeck AE. The effect of work location on urolithiasis in health care professionals. Urolithiasis. 2013;41(4):327–31.PubMedGoogle Scholar
  45. 45.
    Atan L, Andreoni C, Ortiz V, Silva EK, Pitta R, Atan F, et al. High kidney stone risk in men working in steel industry at hot temperatures. Urology. 2005;65(5):858–61.PubMedGoogle Scholar
  46. 46.
    Eisner BH, Sheth S, Dretler SP, Herrick B, Pais VM Jr. Effect of socioeconomic status on 24-hour urine composition in patients with nephrolithiasis. Urology. 2012;80(1):43–7.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.VA St. Louis Health Care, St. Louis UniversitySt. LouisUSA
  2. 2.Washington University in St. LouisSt. LouisUSA

Personalised recommendations