Advertisement

Evaluation and Management of Pediatric Nephrolithiasis

  • Michelle A. BaumEmail author
Chapter
Part of the Nutrition and Health book series (NH)

Abstract

The incidence of nephrolithiasis in pediatrics is increasing. All children with nephrolithiasis should have a complete metabolic evaluation on initial presentation, as a metabolic risk factor may be found in the majority of children. Careful consideration in pediatric nephrolithiasis of rare genetic causes of kidney stones disease should be at the forefront of the evaluation, as many of these disorders present in childhood and are associated with a lifetime of morbidities related to nephrolithiasis as well as the risk for development of chronic kidney disease. Treatment of the underlying metabolic risk factors helps prevent further stone formation and the morbidities associated with stone formation, such as pain, surgery, and chronic kidney disease.

Keywords

Pediatric Nephrolithiasis Primary hyperoxaluria Dent disease Cystinuria Genetics 

References

  1. 1.
    Taisan GE, Ross ME, Liahi S, et al. Annual incidence of nephrolithiasis among children and adults in South Carolina from 1997–2012, with a particular increase in the adolescent female population. Clin J Am Soc Nephrol. 2016;11(3):488–96.CrossRefGoogle Scholar
  2. 2.
    Novak TE, Lakshmanan Y, Trock BJ, et al. Sex prevalence of pediatric kidney stone disease in the United States. Urology. 2009;74(1):104–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Dwyer ME, Krambeck AE, Bergstralh EJ, et al. Temporal trends in incidence of kidney stones among children: a 25-year population based study. J Urol. 2012;188:247–52.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Bonzo JR, Taisan GE. The emergence of kidney stone disease during childhood—impact on adults. Curr Urol Rep. 2017;18(44):1–6.Google Scholar
  5. 5.
    Tasian GE, Kabarriti AE, Kalmus A, et al. Kidneystone recurrence among children and adolescents. J Urol. 2017;197:246–52.PubMedCrossRefGoogle Scholar
  6. 6.
    Cameron MA, Sakhaee K, Moe OW. Nephrolithiasis in children. Pediatr Nephrol. 2005;20:1587–92.PubMedCrossRefGoogle Scholar
  7. 7.
    Hoppe B, Kemper MJ. Diagnostic examination of the child with urolithiasis or nephrocalcinosis. Pediatr Nephrol. 2010;25:403–13.PubMedCrossRefGoogle Scholar
  8. 8.
    Spivacow FR, Negri AL, del Valle EE, et al. Metabolic risk factors in children with kidney stone disease. Pediatr Nephrol. 2008;23:1129–33.PubMedCrossRefGoogle Scholar
  9. 9.
    Cochat P, Pichault V, Bacchetta J, et al. Nephrolithiasis related to inborn metabolic disease. Pediatr Nephrol. 2010;25:415–24.PubMedCrossRefGoogle Scholar
  10. 10.
    Edvardsson V, Goldfarb D, Lieske J, et al. Hereditary causes of kidney stones and chronic kidney disease. Pediatr Nephrol. 2013;28:1923–42.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Braun DA, Lawson JA, Gee HY, et al. Prevalence of monogenic causes in pediatric patients with nephrolithiasis or nephrocalcinosis. Clin J Am Soc Nephrol. 2016;11(4):664–72.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Daga A, Majmundar AJ, Braun DA, Gee HY, et al. Whole exome sequencing frequently detects a monogenic cause in early onset nephrolithiasis and Nephrocalcinosis. Kidney Int. 2018;93(1):204–13.PubMedCrossRefGoogle Scholar
  13. 13.
    Guven AG, Koyun M, Baysal YE, et al. Urolithiasis in the first year of life. Pediatr Nephrol. 2010;25:129–34.PubMedCrossRefGoogle Scholar
  14. 14.
    Poito C, La Manna A, Signoriello G, Marte A. Recurrent abdominal pain in childhood urolithiasis. Pediatrics. 2009;124(6):e1088–94.CrossRefGoogle Scholar
  15. 15.
    Schell-Feith EA, Kist-van Holthe JE, van der Heijden AJ. Nephrocalcinosis in preterm infants. Pediatr Nephrol. 2010;25:221–30.PubMedCrossRefGoogle Scholar
  16. 16.
    Skolarikos A, Dellis A, Knoll T. Ureteropelvic obstruction and renal stones: etiology and treatment. Urolithiasis. 2015;43(1):5–12.PubMedCrossRefGoogle Scholar
  17. 17.
    Stephany HA, Clayton DB, Tanaka ST, et al. Development of upper tract stones in patients with congenital neurogenic bladder. J Pediatr Urol. 2014;10(1):112–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Raj GV, Auge BK, Assimos D, et al. Metabolic abnormalities associated with renal calculi in patients with horseshoe kidneys. J Endourol. 2004;18(2):157–61.PubMedCrossRefGoogle Scholar
  19. 19.
    Nazzal L, Puri S, Goldfarb D. Enteric hyperoxaluria: an important cause of end-stage kidney disease. Nephrol Dial Transplant. 2016;31L:375–82.CrossRefGoogle Scholar
  20. 20.
    Asplin J. The management of patients with enteric hyperoxaluria. Urolithiasis. 2016;44:33–43.PubMedCrossRefGoogle Scholar
  21. 21.
    Gibeny E, Goldfarb D. The association of nephrolithiasis with cystic fibrosis. Am J Kidney Dis. 2003;42:1–11.CrossRefGoogle Scholar
  22. 22.
    Pober B. Williams-Beuren syndrome. N Engl J Med. 2010;362:239–52.PubMedCrossRefGoogle Scholar
  23. 23.
    Weinstein DA, Somers MJ, Wolfsdorf JI. Decreased urinary citrate excretion in type 1a glycogen storage disease. J Pediatr. 2001;138(3):378–82.PubMedCrossRefGoogle Scholar
  24. 24.
    Rake J, Visser G, Labrune P, et al. Guidelines for management of glycogen storage disease type 1—European study on glycogen storage disease type 1 (ESGSD 1). Eur J Pediatr. 2002;161(1):S112–9.PubMedCrossRefGoogle Scholar
  25. 25.
    McNally M, Pyzik P, Rubenstein J, et al. Empiric use of potassium citrate reduces kidney-stone incidence with the ketogenic diet. Pediatrics. 2009;124:e300–4.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Kossoff E, Pyzik P, Furth S, et al. Kidney stones, carbonic anhydrase inhibitors, and the ketogenic diet. Epilepsia. 2002;43(10):1168–71.PubMedCrossRefGoogle Scholar
  27. 27.
    Blank S, Scanlon KS, Sinks TH, et al. An outbreak of hypervitaminosis D associated with the overfortification of milk from a home delivery-dairy. Am J Public Health. 1995;85(5):656–9.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Traxer O, Huet B, Poindexter J, et al. Effect of ascorbic acid consumption on urinary stone risk factors. J Urol. 2003;2(1):397–401.CrossRefGoogle Scholar
  29. 29.
    Saltel E, Angel JB, Futter NG, et al. Increased prevalence and analysis of risk factors for indinavir nephrolithiasis. J Urol. 2000;164(6):1895–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Raheem O, Mirheydar H, Palazzi K, et al. Prevalence of nephrolithiasis in human immunodeficiency virus infected patients on the highly active antiretroviral therapy. J Endourol. 2012;26(8):1095–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Grant MT, Eisner BH, Bechis SK. Ureteral obstruction due to radiolucent atazanavir ureteral stone. J Endourol Case Rep. 2017;3(1):152–4.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Rockwood N, Mandalia S, Bower M. Ritonavir boosted atazanavir exposure is associated with an increased rate of renal stones compared with efavirenz, ritonavir-boosted lopinavir and ritonavir-boosted darunavir. AIDS. 2011;25(13):1671–3.PubMedCrossRefGoogle Scholar
  33. 33.
    Azvi Z, Koktener A, Uras N, et al. Nephrolithiasis associated with ceftriaxone therapy a prospective study in 51 children. Arch Dis Child. 2004;11:1069–72.Google Scholar
  34. 34.
    Taylor EN, Fung TT, Curhan GC. DASH-style diet associates with reduced risk for kidney stones. J Am Soc Nephrol. 2009;20(10):2253–9.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Nouvenne A, Ticinesi A, Morelli I, et al. Fad diets and their effect on urinary stone formation. Transl Androl Urol. 2014;3(3):303–12.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Lopez M, Hoppe B. History epidemiology and regional diversities of urolithaisis. Pediatr Nephrol. 2010;25:49–59.PubMedCrossRefGoogle Scholar
  37. 37.
    Coe F, Parks JH, Moore ES. Familial idiopathic hypercalciuria. NEJM. 1979;300:337–40.PubMedCrossRefGoogle Scholar
  38. 38.
    Passerotti C, Chow JS, Silva A, et al. Ultrasound versus computerized tomography for evaluation of urolithiasis. J Urol. 2009;182(4 suppl):1829–34.PubMedCrossRefGoogle Scholar
  39. 39.
    Coe F, Worcester E, Evan A. Idiopathic hypercalciuria and formation of calcium renal stones. Nat Rev Nephrol. 2016;12(9):519–33.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Hoppe B, Beck BB, Milliner DS. The primary hyperoxalurias. Kidney Int. 2009;75:1264–71.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Sumorok N, Goldfarb D. Update on cystinuria. Curr Opin Nephrol Hypertens. 2013;22(4):427–31.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Wang SS, Devuyst O, Courtoy PJ, et al. Mice lacking renal chloride channel CLC-5 are a model for Dent’s disease, a nephrolithiasis disorder associated with defective receptor-mediated endocytosis. Hum Mol Genet. 2000;9:2937–45.PubMedCrossRefGoogle Scholar
  43. 43.
    Hoopes RR Jr, Shrimpton AE, Knohl SJ, et al. Dent disease with mutations in OCRL1. Am J Hum Genet. 2005;76:260–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Williams-Larson AW. Urinary calculi associated with purine metabolism. Uric acid nephrolithiasis. Endocrinol Metab Clin N Am. 1990;19(4):821–38.CrossRefGoogle Scholar
  45. 45.
    Torres R, Puig J, Jinnah H. Update on the phenotypic spectrum of Lesch-Nyhan disease and its attenuated variants. Curr Rheumatol Rep. 2012;14(2):189–94.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Jones DP, Mahmoud H, Chesney RW. Tumor lysis syndrome: pathogenesis and management. Pediatr Nephrol. 1995;9(2):206–12.PubMedCrossRefGoogle Scholar
  47. 47.
    Goldman SC, Holcenberg JS, Finklestein JZ, et al. Randomized comparison between rasburicase and allopurinol in children with lymphoma or leukemia at high risk for tumor lysis. Blood. 2001;97(10):2998–3003.PubMedCrossRefGoogle Scholar
  48. 48.
    Edvardsson V, Palsson R, Olafsson I, et al. Clinical features and genotype of adenine phosphoribosyltransferase deficiency in Iceland. Am J Kidney Dis. 2001;38:473–90.PubMedCrossRefGoogle Scholar
  49. 49.
    Bollee G, Dollinger C, Boutaaud L, et al. Phenotype and genotype characterization of adenine phosphoribosyltransferase deficiency. J Am Soc Nephrol. 2010;21:679–88.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Matos V, van Melle G, Boulat O, et al. Urinary phosphate/creatinine, calcium/creatinine, and magnesium/creatinine ratios in a healthy pediatric population. J Pediatr. 1997;131:252–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Miliner DS. Urolithiasis. In: Avner ED, Harmon WE, Niaudet P, Yoshikawa N, editors. Pediatric nephrology, Vol. 2. 6th ed. Berlin/Heidelberg: Springer; 2009. p. 1405–30.CrossRefGoogle Scholar
  52. 52.
    So NP, Osoria AV, Simon SD, et al. Normal urinary calcium/creatinine ratios in African-American and Caucasian children. Pediatr Nephrol. 2001;16:133–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Polinsky MS, Kaiser BA, Baluarte HJ, et al. Renal stones and hypercalciuria. In: Barnes LA, DeVivo DC, Kaback MM, Morrow G, Oski FA, Rudolph AM, editors. Advances in pediatrics, vol. 40. St. Louis: Mosby; 1993. p. 353–84.Google Scholar
  54. 54.
    Matoo A, Goldfarb DS. Cystinuria. Semin Nephrol. 2008;28(2):181–91.CrossRefGoogle Scholar
  55. 55.
    Baum MA. Approach to stone formation in the pediatric population. Clin Rev Bone Miner Metab. 2012;10:50–60.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Pediatric NephrologyBoston Children’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations