Advertisement

Nephrolithiasis in Chronic Kidney Disease

  • Adam Zayac
  • Semaan Kobrosssi
  • Stephen KnohlEmail author
Chapter
Part of the Nutrition and Health book series (NH)

Abstract

Nephrolithiasis and chronic kidney disease (CKD) are two common entities that are increasing in prevalence and are associated with high costs. Each may serve as an independent risk factor for the other while also serving as dual manifestations of certain inherited conditions. Part one of this chapter highlights the relationship of nephrolithiasis and CKD, while the second part focuses on specific inherited conditions associated with both entities. Part three will briefly touch on management issues for those afflicted with both diseases.

A number of studies suggest that nephrolithiasis is associated with an increased risk of future kidney disease, but the level of evidence to support this is not strong nor has causality been established. CKD does not appear to be associated with an increased risk of developing kidney stones. Regarding management of nephrolithiasis in CKD, there is little data to guide therapy, so decisions need to be individualized according to the level of GFR and the potential side effects of medications.

While a relationship between CKD and nephrolithiasis has been suggested, more research, namely, in the form of large, prospective trials, are necessary to determine what, if any, impact each entity has on the other. However, given that there are some inherited conditions associated with both entities, it is prudent for health-care providers to ensure that young patients presenting with nephrolithiasis are screened for these disorders, as well as followed for future kidney disease.

Keywords

Nephrolithiasis Kidney stones Chronic kidney disease (CKD) End-stage renal disease (ESRD) Glomerular filtration rate (GFR) Inherited tubulopathies Dent disease Hypercalciuria Hyperoxalurias Cystinuria Inborn errors of purine metabolism Adenine phosphoribosyltransferase (APRT) deficiency Familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC) Lithotripsy 

References

  1. 1.
    Stamatelou KK, Francis ME, Jones CA, Nyberg LM, Curhan GC. Time trends in reported prevalence of kidney stones in the United States: 1976–1994. Kidney Int. 2003;63(5):1817–23.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Scales CD Jr, Smith AC, Hanley JM, Saigal CS, Urologic Diseases in America Project. Prevalence of kidney stones in the United States. Eur Urol. 2012;62(1):160–5.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Pfau A, Knauf F. Update on nephrolithiasis: core curriculum 2016. Am J Kidney Dis. 2016;68(6):973–85.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Annual data report National Kidney Foundation Kidney Early Evaluation Program™. Am J Kidney Dis. 2005;46(Suppl. 3):S1–S158.Google Scholar
  5. 5.
    Sakhaee K. Nephrolithiasis as a systemic disorder. Curr Opin Nephrol Hypertens. 2008;17(3):304–9.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Kidney Disease Statistics for the United States: National Institute of Diabetes and Digestive and Kidney Diseases. 2016. Available from: https://www.niddk.nih.gov/health-information/health-statistics/kidney-disease.
  7. 7.
    Vupputuri S. History of kidney stones as a possible risk factor for chronic kidney disease. Ann Epidemiol. 2004;14(3):222–8.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Saucier NA, Sinha MK, Liang KV, Krambeck AE, Weaver AL, Bergstralh EJ, et al. Risk factors for CKD in persons with kidney stones: a case-control study in Olmsted County, Minnesota. Am J Kidney Dis. 2010;55(1):61–8.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Sigurjonsdottir VK, Runolfsdottir HL, Indridason OS, Palsson R, Edvardsson VO. Impact of nephrolithiasis on kidney function. BMC Nephrol. 2015;16(1):149.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Rule AD, Bergstralh EJ, Melton LJ 3rd, Li X, Weaver AL, Lieske JC. Kidney stones and the risk for chronic kidney disease. Clin J Am Soc Nephrol. 2009;4(4):804–11.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    El-Zoghby ZM, Lieske JC, Foley RN, Bergstralh EJ, Li X, Joseph Melton L, et al. Urolithiasis and the risk of ESRD. Clin J Am Soc Nephrol. 2012;7(9):1409–15.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Chou YH, Li CC, Hsu H, Chang WC, Liu CC, Li WM, et al. Renal function in patients with urinary stones of varying compositions. Kaohsiung J Med Sci. 2011;27(7):264–7.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Alexander RT, Hemmelgarn BR, Wiebe N, Bello A, Morgan C, Samuel S, et al. Kidney stones and kidney function loss: a cohort study. BMJ. 2012;345:e5287.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Hippisley-Cox J, Coupland C. Predicting the risk of Chronic Kidney Disease in Men and Women in England and Wales: prospective derivation and external validation of the QKidney® Scores. BMC Fam Pract. 2010;11:49.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Kambal A, Wahab EM, Khattab AH. Urolithiasis in Sudan. Geographical distribution and the influence of climate. Trop Geogr Med. 1979;31(1):75–9.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Akinci M, Esen T, Tellaloglu S. Urinary stone disease in Turkey: an updated epidemiological study. Eur Urol. 1991;20(3):200–3.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Soucie JM, Thun MJ, Coates RJ, McClellan W, Austin H. Demographic and geographic variability of kidney stones in the United States. Kidney Int. 1994;46(3):893–9.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Lee YH, Huang WC, Tsai JY, Lu CM, Chen WC, Lee MH, et al. Epidemiological studies on the prevalence of upper urinary calculi in Taiwan. Urol Int. 2002;68(3):172–7.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Safarinejad MR. Adult urolithiasis in a population-based study in Iran: prevalence, incidence, and associated risk factors. Urol Res. 2007;35(2):73–82.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Fakheri RJ, Goldfarb DS. Ambient temperature as a contributor to kidney stone formation: implications of global warming. Kidney Int. 2011;79(11):1178–85.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Eisner BH, Sheth S, Herrick B, Pais VM Jr, Sawyer M, Miller N, et al. The effects of ambient temperature, humidity and season of year on urine composition in patients with nephrolithiasis. BJU Int. 2012;110(11 Pt C):E1014–7.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Shoag J, Halpern J, Goldfarb DS, Eisner BH. Risk of chronic and end stage kidney disease in patients with nephrolithiasis. J Urol. 2014;192(5):1440–5.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Kummer AE, Grams M, Lutsey P, Chen Y, Matsushita K, Köttgen A, et al. Nephrolithiasis as a risk factor for CKD: the atherosclerosis risk in communities study. Clin J Am Soc Nephrol. 2015;10(11):2023–9.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Sax L, Gilmartin S, Bryant A. Assessing response rates and nonresponse bias in web and paper surveys. Res High Educ. 2003;44(4):409–32.CrossRefGoogle Scholar
  25. 25.
    Cull WL, O’Connor KG, Sharp S, Tang SS. Response rates and response bias for 50 surveys of pediatricians. Health Serv Res. 2005;40(1):213–26.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Keller JJ, Chen YK, Lin HC. Association between chronic kidney disease and urinary calculus by stone location: a population-based study. BJU Int. 2012;110(11 C):E1074–E8.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Denburg MR, Jemielita TO, Tasian GE, Haynes K, Mucksavage P, Shults J, et al. Assessing the risk of incident hypertension and chronic kidney disease after exposure to shock wave lithotripsy and ureteroscopy. Kidney Int. 2016;89(1):185–92.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Zhe M, Hang Z. Nephrolithiasis as a risk factor of chronic kidney disease: a meta-analysis of cohort studies with 4,770,691 participants. Urolithiasis. 2017;45(5):441–8Google Scholar
  29. 29.
    Shang W, Li L, Ren Y, Ge Q, Ku M, Ge S, et al. History of kidney stones and risk of chronic kidney disease: a meta-analysis. PeerJ. 2017;5(1):e2907.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Worcester E, Parks JH, Josephson MA, Thisted RA, Coe FL. Causes and consequences of kidney loss in patients with nephrolithiasis. Kidney Int. 2003;64(6):2204–13.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Kadlec AO, Greco KA, Fridirici ZC, Gerber D, Turk TM. Effect of renal function on urinary mineral excretion and stone composition. Urology. 2011;78(4):744–7.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Hung SF, Chung SD, Wang SM, Yu HJ, Huang HS. Chronic kidney disease affects the stone-free rate after extracorporeal shock wave lithotripsy for proximal ureteric stones. BJU Int. 2010;105(8):1162–7.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Gershman B, Sheth S, Dretler SP, Herrick B, Lang K, Pais VM Jr, et al. Relationship between glomerular filtration rate and 24-hour urine composition in patients with nephrolithiasis. Urology. 2012;80(1):38–42.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Coe FL, Evan AP, Worcester EM, Lingeman JE. Three pathways for human kidney stone formation. Urol Res. 2010;38(3):147–60.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Aggarwal KP, Narula S, Kakkar M, Tandon C. Nephrolithiasis: molecular mechanism of renal stone formation and the critical role played by modulators. Biomed Res Int. 2013;2013:292953.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Shadman A, Bastani B. Kidney calculi: pathophysiology and as a systemic disorder. Iran J Kidney Dis. 2017;11(3):180–91.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Taylor EN, Stampfer MJ, Curhan GC. Obesity, weight gain, and the risk of kidney stones. JAMA. 2005;293(4):455–62.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Chang IH, Lee YT, Lee DM, Kim TH, Myung SC, Kim YS, et al. Metabolic syndrome, urine pH, and time-dependent risk of nephrolithiasis in Korean men without hypertension and diabetes. Urology. 2011;78(4):753–8.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Durner L, Bourdoumis A, Buchholz N. Metabolic syndrome and urolithiasis. C R Chim. 2016;19(11–12):1451–5.CrossRefGoogle Scholar
  40. 40.
    Stoller ML, Meng MV, Abrahams HM, Kane JP. The primary stone event: a new hypothesis involving a vascular etiology. J Urol. 2004;171(5):1920–4.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Reiner AP, Kahn A, Eisner BH, Pletcher MJ, Sadetsky N, Williams OD, et al. Kidney stones and subclinical atherosclerosis in young adults: the CARDIA study. J Urol. 2011;185(3):920–5.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Khan SR, Rodriguez DE, Gower LB, Monga M. Association of Randall plaque with collagen fibers and membrane vesicles. J Urol. 2012;187(3):1094–100.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Alexander RT, Hemmelgarn BR, Wiebe N, Bello A, Samuel S, Klarenbach SW, et al. Kidney stones and cardiovascular events: a cohort study. Clin J Am Soc Nephrol. 2014;9(3):506–12.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Cheungpasitporn W, Thongprayoon C, Mao MA, O’Corragain OA, Edmonds PJ, Erickson SB. The risk of coronary heart disease in patients with kidney stones: a systematic review and meta-analysis. N Am J Med Sci. 2014;6(11):580–5.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Yiu AJ, Callaghan D, Sultana R, Bandyopadhyay BC. Vascular calcification and stone disease: a new look towards the mechanism. J Cardiovasc Dev Dis. 2015;2(3):141–64.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Dent CE, Friedman M. Hypercalcuric rickets associated with renal tubular damage. Arch Dis Child. 1964;39:240–9.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Wrong OM, Norden AG, Feest TG. Dent’s disease; a familial proximal renal tubular syndrome with low-molecular-weight proteinuria, hypercalciuria, nephrocalcinosis, metabolic bone disease, progressive renal failure and a marked male predominance. QJM. 1994;87(8):473–93.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Thakker RV. Pathogenesis of Dent’s disease and related syndromes of X-linked nephrolithiasis. Kidney Int. 2000;57(3):787–93.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Edvardsson VO, Goldfarb DS, Lieske JC, Beara-Lasic L, Anglani F, Milliner DS, et al. Hereditary causes of kidney stones and chronic kidney disease. Pediatr Nephrol. 2013;28(10):1923–42.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Scheinman SJ. X-linked hypercalciuric nephrolithiasis: clinical syndromes and chloride channel mutations. Kidney Int. 1998;53(1):3–17.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Scheinman SJ. Nephrolithiasis. Semin Nephrol. 1999;19(4):381–8.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Fisher SE, van Bakel I, Lloyd SE, Pearce SH, Thakker RV, Craig IW. Cloning and characterization of CLCN5, the human kidney chloride channel gene implicated in Dent disease (an X-linked hereditary nephrolithiasis). Genomics. 1995;29(3):598–606.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Hoopes RR Jr, Shrimpton AE, Knohl SJ, Hueber P, Hoppe B, Matyus J, et al. Dent disease with mutations in OCRL1. Am J Hum Genet. 2005;76(2):260–7.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Gunther W, Piwon N, Jentsch TJ. The ClC-5 chloride channel knock-out mouse - an animal model for Dent’s disease. Pflugers Arch. 2003;445(4):456–62.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Cebotaru V, Kaul S, Devuyst O, Cai H, Racusen L, Guggino WB, et al. High citrate diet delays progression of renal insufficiency in the ClC-5 knockout mouse model of Dent’s disease. Kidney Int. 2005;68(2):642–52.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Raja KA, Schurman S, D’Mello RG, Blowey D, Goodyer P, Van Why S, et al. Responsiveness of hypercalciuria to thiazide in Dent’s disease. J Am Soc Nephrol. 2002;13(12):2938–44.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Robijn S, Hoppe B, Vervaet BA, D’Haese PC, Verhulst A. Hyperoxaluria: a gut-kidney axis? Kidney Int. 2011;80(11):1146–58.CrossRefGoogle Scholar
  58. 58.
    Williams HE, Smith LH Jr. Hyperoxaluria in L-glyceric aciduria: possible pathogenic mechanism. Science. 1971;171(3969):390–1.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Danpure CJ, Jennings PR. Peroxisomal alanine:glyoxylate aminotransferase deficiency in primary hyperoxaluria type I. FEBS Lett. 1986;201(1):20–4.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Purdue PE, Takada Y, Danpure CJ. Identification of mutations associated with peroxisome-to-mitochondrion mistargeting of alanine/glyoxylate aminotransferase in primary hyperoxaluria type 1. J Cell Biol. 1990;111(6 Pt 1):2341–51.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Cramer SD, Ferree PM, Lin K, Milliner DS, Holmes RP. The gene encoding hydroxypyruvate reductase (GRHPR) is mutated in patients with primary hyperoxaluria type II. Hum Mol Genet. 1999;8(11):2063–9.CrossRefGoogle Scholar
  62. 62.
    Belostotsky R, Seboun E, Idelson GH, Milliner DS, Becker-Cohen R, Rinat C, et al. Mutations in DHDPSL are responsible for primary hyperoxaluria type III. Am J Hum Genet. 2010;87(3):392–9.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Hoppe B, Beck BB, Milliner DS. The primary hyperoxalurias. Kidney Int. 2009;75(12):1264–71.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Scheid C, Koul H, Hill WA, Luber-Narod J, Kennington L, Honeyman T, et al. Oxalate toxicity in LLC-PK1 cells: role of free radicals. Kidney Int. 1996;49(2):413–9.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Leumann E, Hoppe B. The primary hyperoxalurias. J Am Soc Nephrol. 2001;12(9):1986–93.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Edvardsson V, Palsson R, Olafsson I, Hjaltadottir G, Laxdal T. Clinical features and genotype of adenine phosphoribosyltransferase deficiency in Iceland. Am J Kidney Dis. 2001;38(3):473–80.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Hoppe B. An update on primary hyperoxaluria. Nat Rev Nephrol. 2012;8(8):467–75.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Jamieson NV, European PHI Transplantation Study Group. A 20-year experience of combined liver/kidney transplantation for primary hyperoxaluria (PH1): the European PH1 transplant registry experience 1984–2004. Am J Nephrol. 2005;25(3):282–9.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Illies F, Bonzel KE, Wingen AM, Latta K, Hoyer PF. Clearance and removal of oxalate in children on intensified dialysis for primary hyperoxaluria type 1. Kidney Int. 2006;70(9):1642–8.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Semins MJ, Asplin JR, Steele K, Assimos DG, Lingeman JE, Donahue S, et al. The effect of restrictive bariatric surgery on urinary stone risk factors. Urology. 2010;76(4):826–9.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Fernandez E, Carrascal M, Rousaud F, Abian J, Zorzano A, Palacin M, et al. rBAT-b(0,+)AT heterodimer is the main apical reabsorption system for cystine in the kidney. Am J Physiol Renal Physiol. 2002;283(3):F540–8.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Chillaron J, Font-Llitjos M, Fort J, Zorzano A, Goldfarb DS, Nunes V, et al. Pathophysiology and treatment of cystinuria. Nat Rev Nephrol. 2010;6(7):424–34.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Dello Strologo L, Pras E, Pontesilli C, Beccia E, Ricci-Barbini V, de Sanctis L, et al. Comparison between SLC3A1 and SLC7A9 cystinuria patients and carriers: a need for a new classification. J Am Soc Nephrol. 2002;13(10):2547–53.CrossRefGoogle Scholar
  74. 74.
    Martens K, Jaeken J, Matthijs G, Creemers JW. Multi-system disorder syndromes associated with cystinuria type I. Curr Mol Med. 2008;8(6):544–50.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Ahmed K, Dasgupta P, Khan MS. Cystine calculi: challenging group of stones. Postgrad Med J. 2006;82(974):799–801.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Lotz M, Bartter FC. Stone dissolution with D-penicillamine in cystinuria. Br Med J. 1965;2(5475):1408–9.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Assimos DG, Leslie SW, Ng C, Streem SB, Hart LJ. The impact of cystinuria on renal function. J Urol. 2002;168(1):27–30.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Hidaka Y, Palella TD, O’Toole TE, Tarle SA, Kelley WN. Human adenine phosphoribosyltransferase. Identification of allelic mutations at the nucleotide level as a cause of complete deficiency of the enzyme. J Clin Invest. 1987;80(5):1409–15.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Bollee G, Harambat J, Bensman A, Knebelmann B, Daudon M, Ceballos-Picot I. Adenine phosphoribosyltransferase deficiency. Clin J Am Soc Nephrol. 2012;7(9):1521–7.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Bollee G, Dollinger C, Boutaud L, Guillemot D, Bensman A, Harambat J, et al. Phenotype and genotype characterization of adenine phosphoribosyltransferase deficiency. J Am Soc Nephrol. 2010;21(4):679–88.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Arnadottir M. Febuxostat in adenosine phosphoribosyltransferase deficiency. Am J Kidney Dis. 2014;64(2):316.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Weber S, Schneider L, Peters M, Misselwitz J, Ronnefarth G, Boswald M, et al. Novel paracellin-1 mutations in 25 families with familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J Am Soc Nephrol. 2001;12(9):1872–81.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Abitbol CL, Seeherunvong W. Metabolic syndrome and associated kidney disease. In: Pediatric metabolic syndrome: comprehensive clinical review and related health issues. London: Springer-Verlag London Ltd; 2012. p. 117–36.CrossRefGoogle Scholar
  84. 84.
    Li J, Ananthapanyasut W, Yu AS. Claudins in renal physiology and disease. Pediatr Nephrol. 2011;26(12):2133–42.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Godron A, Harambat J, Boccio V, Mensire A, May A, Rigothier C, et al. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis: phenotype-genotype correlation and outcome in 32 patients with CLDN16 or CLDN19 mutations. Clin J Am Soc Nephrol. 2012;7(5):801–9.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Daudon M, Jungers P. Clinical value of crystalluria and quantitative morphoconstitutional analysis of urinary calculi. Nephron Physiol. 2004;98(2):p31–6.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Torres RJ, Prior C, Puig JG. Efficacy and safety of allopurinol in patients with hypoxanthine-guanine phosphoribosyltransferase deficiency. Metabolism. 2007;56(9):1179–86.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Cochat P, Pichault V, Bacchetta J, Dubourg L, Sabot JF, Saban C, et al. Nephrolithiasis related to inborn metabolic diseases. Pediatr Nephrol. 2010;25(3):415–24.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Becker MA, Puig JG, Mateos FA, Jimenez ML, Kim M, Simmonds HA. Inherited superactivity of phosphoribosylpyrophosphate synthetase: association of uric acid overproduction and sensorineural deafness. Am J Med. 1988;85(3):383–90.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Torres RJ, Puig JG. Hypoxanthine-guanine phosophoribosyltransferase (HPRT) deficiency: Lesch-Nyhan syndrome. Orphanet J Rare Dis. 2007;2:48.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Gambaro G, Croppi E, Coe F, Lingeman J, Moe O, Worcester E, et al. Metabolic diagnosis and medical prevention of calcium nephrolithiasis and its systemic manifestations: a consensus statement. J Nephrol. 2016;29(6):715–34.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Pedersen EB, Thomsen IM, Lauridsen TG. Abnormal function of the vasopressin-cyclic-AMP-aquaporin2 axis during urine concentrating and diluting in patients with reduced renal function. A case control study. BMC Nephrol. 2010;11:26.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Ettinger B, Citron JT, Livermore B, Dolman LI. Chlorthalidone reduces calcium oxalate calculous recurrence but magnesium hydroxide does not. J Urol. 1988;139(4):679–84.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Kidney Disease Outcomes Quality Initiative. K/DOQI clinical practice guidelines on hypertension and antihypertensive agents in chronic kidney disease. Am J Kidney Dis. 2004;43(5 Suppl 1):S1–290.Google Scholar
  95. 95.
    Nouvenne A, Meschi T, Prati B, Guerra A, Allegri F, Vezzoli G, et al. Effects of a low-salt diet on idiopathic hypercalciuria in calcium-oxalate stone formers: a 3-mo randomized controlled trial. Am J Clin Nutr. 2010;91(3):565–70.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Ettinger B, Tang A, Citron JT, Livermore B, Williams T. Randomized trial of allopurinol in the prevention of calcium oxalate calculi. N Engl J Med. 1986;315(22):1386–9.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.SUNY Upstate Medical UniversitySyracuseUSA

Personalised recommendations