Advertisement

Case Studies with Asian Soils

  • Kodoth Prabhakaran Nair
Chapter

Abstract

This chapter discusses the determination of Potassium buffer power and its integration into the computations to enhance the precision of the predictability of nutrient uptake of Potassium by perennial crops, such as Cardamom, growing widely in Southern India, in the States of Kerala and Karnataka. Also, the influence of K buffer in determining cardamom capsule yield.

Keywords

Potassium buffer power Perennial crops 

References

  1. Adams, F. (1971). Ionic concentrations and activities in soil solutions. Soil Science Society of America Proceedings, 35, 420–426. Anderson.CrossRefGoogle Scholar
  2. Argersinger, W. J., Jr., Davidson, A. W., & Bonner, O. D. (1950). Thermodynamics and ion exchange phenomena. Transactions of the Kansas Academy of Science, 53, 404–410.CrossRefGoogle Scholar
  3. Beckett, P. H. T. (1971). Potassium potentials–A review. In Potash Review (pp. 1–41). Bern: International Potash Institute.Google Scholar
  4. Beckett, P. H. T. (1972). Critical cation activity ratios. Advances in Agronomy, 24, 376–412.Google Scholar
  5. Bertsch, P. M., & Thomas, G. W. (1985). Potassium status of temperate region soils. In R. D. Munson (Ed.), Potassium in Agriculture (pp. 131–162). Madison: Am. Soc. Agron.Google Scholar
  6. Boguslawski, E. V., & Lach, G. (1971). Die K-Nachlieferung des Bodens im Pflanzen experiment im Vergleich mit dem austauschbaren Kalium. Zeitschrift für Acker- und Pflanzenbau, 134, 135–164.Google Scholar
  7. Borlaug, N. E. (1990). The challenge of feeding 8 billion people. Farm Chemical International, summer issue, 1990.Google Scholar
  8. Borlaug, N. E., & Dowswell, C. R. (1993). Fertilizer: To nourish infertile soil that feeds a fertile population that crowds a fragile world. Better Crops With Plant Food, 77(3), 6–7.Google Scholar
  9. Brouder, S. M., & Cassman, K. G. (1994). Evaluation of a mechanistic model of potassium uptake by cotton in vermiculitic soil. Soil Science Society of America Journal, 58, 1174–1183.CrossRefGoogle Scholar
  10. Cassman, K. G. (1990). The role of soil fertility research in developing sustainable food production systems. Better Crops With Plant Food, 74(4), 16–19.Google Scholar
  11. Claassen, N. (1990). Die Aufnahme von Nährstoffen aus dem Boden durch die höhere Pflanze als Ergebnis von Verfügbarkeit und Aneignungsvermögen. Gottingen: Severin-Verlag.Google Scholar
  12. Claassen, N., & Barber, S. A. (1976). Simulation model for nutrient uptake from soil by growing plant root system. Agronomy Journal, 68, 961–964.CrossRefGoogle Scholar
  13. Claassen, N., Syring, K. M., & Jungk, A. (1986). Verification of a mathematical model by simulating potassium uptake from soil. Plant and Soil, 95, 209–220.CrossRefGoogle Scholar
  14. Cordero, A., & Espinosa, J. (1994). Maximum economic rice yield in Costa Rica. Research for maximum yield in harmony with nature. In XV world congress of soil science (pp. 29–39), Acapulco, Mexico, July 10–16.Google Scholar
  15. Curtin, D., & Smillie, G. W. (1983). Soil solution composition as affected by timing and incubation. Soil Science Society of America Journal, 47, 701–707.CrossRefGoogle Scholar
  16. During, C., & Duganzich, D. M. (1979). Simple empirical intensity and buffering capacity measurements to predict potassium uptake by white clover. Plant and Soil, 51, 167–176.CrossRefGoogle Scholar
  17. Evangelou, V. P., Wang, J., & Phillipis, R. E. (1994). New developments and perspectives on soil potassium quantity/intensity relationships. Advances in Agronomy, 52, 173–227.CrossRefGoogle Scholar
  18. Föhse, D., Claassen, N., & Jungk, A. (1991). Phosphorus efficiency of plants. II. Significance of root radius, root hairs, and cation–anion balance for phosphorus influx in seven plant species. Plant and Soil, 132, 261–272.CrossRefGoogle Scholar
  19. Gapon, E. N. (1933). Theory of exchangeable adsorption in soil. Journal of General Chemistry (USSR), 3, 144–163. [Abstract in Chem Abs. 28, 41–49, 1934.].Google Scholar
  20. Grimme, H. (1974). Potassium release in relation to crop production. In International Potash Institute (Ed.), Potassium research and agricultural production (pp. 131–136). Berne: Int. Potash Inst.Google Scholar
  21. Hegde, D. M., & Dwivedi, S. S. (1992). Nutrient management in rice-wheat cropping system in India. Fertility News, 37, 27–42.Google Scholar
  22. Hinsinger, P., Jaillard, B., & Dufey, J. E. (1992). Rapid weathering of a trioctahedral mica by roots of ryegrass. Soil Science Society of America Journal, 56, 977–982.CrossRefGoogle Scholar
  23. Hoagland, R., & Martin, J. C. (1933). Absorption of potassium by plants in relation to replaceable, non-replaceable and soil solution potassium. Soil Science, 36, 1–34.Google Scholar
  24. Jardine, P. M., & Sparks, D. L. (1984). Potassium-calcium exchange in a multi-reactive soil system II. Thermodynamics. Soil Science Society of America Journal, 48, 45–50.CrossRefGoogle Scholar
  25. Kuchenbuch, R., & Jungk, A. (1984). Wirkung der Kaliumdüngung auf die Kalium verfügbarkeit in der Rhizosphäre von Raps. Zeitschrift für Pflanzenernährung und Bodenkdunde, 147, 435–448.CrossRefGoogle Scholar
  26. Kuhlmann, H., & Wehrmann, J. (1984). Kali-Düngeempfehlung auf der Grundlage von 81K-Düngeversuchen zu Gertreide und Zuckerrüben. Zeitschrift für Pflanzenernährung und Bodenkunde, 147, 349–360.CrossRefGoogle Scholar
  27. Lumbanraja, J., & Evangelou, V. P. (1990). Binary and ternary exchange behavior of potassium and ammonium at low exchangeable fractional loads. Soil Science Society of America Journal, 54, 698–705.CrossRefGoogle Scholar
  28. Lumbanraja, J., & Evangelou, V. P. (1992). Potassium quantity–intensity relationships in the presence and absence of NH4 for three Kentucky soils. Soil Science, 154, 366–376.CrossRefGoogle Scholar
  29. Maas, E. V. (1969). Calcium uptake by excised maize roots and interactions with alkali cations. Plant Physiology, 44, 985–989.CrossRefGoogle Scholar
  30. Martin, H. W., & Sparks, D. L. (1983). Kinetics of nonexchangeable potassium release from two coastal plain soils. Soil Science Society of America Journal, 47, 883–887.CrossRefGoogle Scholar
  31. McLean, E. O., & Watson, M. E. (1985). Soil measurement of plant-available potassium. In R. D. Munson (Ed.), Potassium in agriculture (pp. 277–308). Madison: ASA, CSSA, and SSA.Google Scholar
  32. Mengel, K. (1985). Dynamics and availability of major nutrients in soils. Advances in Soil Sciences, 2, 65–131.CrossRefGoogle Scholar
  33. Mengel, K., & Busch, R. (1982). The importance of the potassium buffer power on the critical potassium level in soils. Soil Science, 133, 27–32.CrossRefGoogle Scholar
  34. Mengel, K., & Kirby, E. A. (1980). Potassium in crop production. Advances in Agronomy, 33, 59–110.CrossRefGoogle Scholar
  35. Mengel, K., & Steffens, D. (1985). Potassium uptake of ryegrass (Lolium perenne) and red clover (Trifolium pratense) as related to root parameters. Biology and Fertility of Soils, 1, 53–58.CrossRefGoogle Scholar
  36. Mengel, K., & Uhlenbecker, K. (1993). Determination of available interlayer potassium and its uptake by ryegrass. Soil Science Society of America Journal, 57, 761–766.CrossRefGoogle Scholar
  37. Meyer, D., & Jungk, A. (1993). A new approach to quantify the utilization of nonexchangeable soil potassium by plants. Plant and Soil, 149, 235–243.CrossRefGoogle Scholar
  38. Mitsios, I. K., & Rowell, D. L. (1987). Plant uptake from exchangeable and non-exchangeable potassium. I. Measuring and modelling for onion roots in a chalky boulder clay soil. Journal of Soil Science, 38, 53–63.CrossRefGoogle Scholar
  39. Nair, K. P. P. (1984a). Towards a better approach to soil testing based on the buffer power concept. In Proceeding of 6th International colloquium for the optimization of plant nutrition (Vol. 4, pp. 1221–1228), 2–8 September, Pierre-Martin Prevel, Montpellier, France.Google Scholar
  40. Nair, K. P. P. (1984b). Zinc buffer power as an important criterion for a dependable assessment of plant uptake. Plant and Soil, 81, 209–215.CrossRefGoogle Scholar
  41. Nair, K. P. P. (1992a). Measuring P buffer power to improve routine soil testing for phosphate. European Journal of Agnon, 1(2), 79–84.CrossRefGoogle Scholar
  42. Nair, K. P. P. (1992b). Soil testing procedure to economise on fertilizer use in land management. In The spirit of enterprise — The 1993 rolex awards (pp. 323–325).Google Scholar
  43. Nair, K. P. P., Sadanandan, A. K., Hamza, S., & Abraham, J. (1997). The importance of Potassium buffer power in the growth and yield of Cardamom. Journal of Plant Nutrition, 20, 987–997.CrossRefGoogle Scholar
  44. Narang, R. S., & Bhandari, A. L. (1990). Integrated nitrogen management in rice–wheat system. Paper presented at the rice-wheat workshop. Directorate for Cropping System in Punjab, India. In Proceedings of symposium on maximum yield research, November 16–18, 1990, New Delhi, India.Google Scholar
  45. Narang, R. S., Tiwanria, U. S., and Dev, G. (1994). Maximum yield research studies in rice-wheat system and soil productivity—The Indian experience. Research for maximum yield in harmony with nature. Satellite symposium sponsored by PPI (pp. 46–55). XV World Congress of Soil Science, Acapulco, July 10–16.Google Scholar
  46. Pratt, P. F. (1965). Potassium. In C. A. Black et al. (Eds.), Methods of soil analysis, part 2. Agron. Monogr (Vol. 9, pp. 1023–1031). Madison: ASA.Google Scholar
  47. Roy, H. K., Kumar, A., & Sinha, K. (1990). Response of wheat to K in red loam (Alfisols) soils of Ranchi. Journal of Potassium Research, 6, 23–28.Google Scholar
  48. Schachtschabel, P. (1937). Aufnahme von nicht austauschbarem Kalium durch die Pflanze. Zeitschrift für Pflanzenernährung und Bodenkunde, 48, 107–133.Google Scholar
  49. Schachtschabel, P. (1961). Fixierung und Nachlieferung von Kalium-und Ammonium-Ionen. Beurteilung und Bestimmung des Kaliumversorgungs-grades von Böden. Landwirtschaftliche Forschung, 14, 29–47.Google Scholar
  50. Shu-Yan, C., & Sposito, G. (1981). The thermodynamics of ternary cation exchange systems and the subregular model. Soil Science Society of America Journal, 45, 1084–1089.CrossRefGoogle Scholar
  51. Singh, G. B., & Nambiar, K. K. M. (1986). Crop productivity and fertility under intensive use of chemical fertilizers in long-term field experiments. Indian Journal of Agronomy, 31, 115–127.Google Scholar
  52. Sparks, D. L. (1987). Potassium dynamics in soils. Advances in Soil Sciences, 6, 2–63.Google Scholar
  53. Sparks, D. L., & Huang, P. M. (1985). Physical chemistry of soil potassium. In R. D. Munson (Ed.), Potassium in agriculture (American Society of Agronomy) (pp. 201–276). WI: Madison.Google Scholar
  54. Sposito, G. (1981a). Cation exchange in soils. A historical and theoretical perspective. In R. H. Dowday (Ed.), Chemistry in the soil environment. Madison: Soil Science Society of America.Google Scholar
  55. Sposito, G. (1981b). The Thermodynamics of the soil solution. Oxford: Clarendon Press.Google Scholar
  56. Sposito, G., Holtzelaw, K. M., Johnston, C. T., & Le Vesque, C. S. (1981). Thermodynamics of sodium-copper exchange on Wyoming bentonite at 198°K. Soil Science Society of America Journal, 45, 1079–1084.CrossRefGoogle Scholar
  57. Sposito, G., Holtzelaw, K. M., Charlet, L., Jonany, C., & Page, A. L. (1983). Sodium-calcium and sodium magnesium exchange on Wyoming bentonite in perchlorate and chloride background ionic media. Soil Science Society of America Journal, 47, 51–56.CrossRefGoogle Scholar
  58. Steffens, D., & Mengel, K. (1979). Das Aneignungsvermögen von Lolium perenne im Vergleich zu Trifolium pratense für Zwischenschilht-Kalium der Touminerale. Landw. Forsch. SH., 36, 120–127.Google Scholar
  59. Steffens, D., & Mengel, K. (1981). Vergleichende Untersuchungen zwischen Lolium perenne und Trifolium pratense über das Aneignungsvermögen von Kalium. Mitt. Dtsch. Bodenk. Ges., 32, 375–386.Google Scholar
  60. Swarup, A., & Singh, K. N. (1987). Movement of potassium in a sodic soil profile as influenced by long-term use of inorganic fertilizers under rice-wheat rotation. Journal of the Indian Society of Soil Science, 35, 253–256.Google Scholar
  61. Vanselow, A. P. (1932). Equilibria of the base-exchange reactions of bentonites, permutities, soil colloids, and zeolites. Soil Science, 33, 95–113.CrossRefGoogle Scholar
  62. von Reichenbach, H. (1972). Factors of mica transformation. In Potassium in Soil (pp. 33–42). Berne, Switzerland: Int Potash Institute.Google Scholar
  63. Wood, L. K., & De Turk, E. E. (1941). The adsorption of potassium in soils in replaceable forms. Soil Science Society of America Proceedings, 5, 152–161.CrossRefGoogle Scholar
  64. Woodruff, C. M. (1955a). Ionic equilibria between clay and dilute salt solutions. Soil Science Society of America Proceedings, 19, 36–40.CrossRefGoogle Scholar
  65. Woodruff, C. M. (1955b). The energies of replacement of calcium by potassium in soils. Soil Science Society of America Proceedings, 19, 167–171.CrossRefGoogle Scholar
  66. Xu, M. L., & Liu, Z. Y. (1983). The nutrient status of soil-root interface. II. Potassium accumulation and depletion in rhizosphere soils. Acta Pedologica Sinica, 20, 295–302.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kodoth Prabhakaran Nair
    • 1
  1. 1.International Agricultural Scientistc/o Mavila PankajakshyCalicutIndia

Personalised recommendations