Advertisement

Quantifying the Buffer Power of Soils and Testing Its Effect on Nutrient Availability

  • Kodoth Prabhakaran Nair
Chapter

Abstract

The chapter elaborately discusses how the “Nutrient Buffer Power” can be precisely quantified in the laboratory and its significance in test crop nutrient uptake can be measured by appropriate statistical computations. The first instance is with regard to Phosphorus, in Central European soils, also in African soils, followed by Potassium in African and South Asian soils, and Zinc, in South and Central Asian soils. All the three are the most important diffusible nutrients.

Keywords

Quantifying buffer power Nutrient bio availability Phosphorus buffer power 

References

  1. Barekzai, A. (1984). Alterung von wasserlöslichem Phosphat-untersucht in Giefäß und Modellversuchen. Ph.D. thesis, FB 1g, Justus Liebig University, Giessen.Google Scholar
  2. Barrow, N. J. (1983). On the reversibility of phosphate sorption by soils. Journal of Soil Science, 34, 751–758.CrossRefGoogle Scholar
  3. Beckwith, R. S. (1965). Sorbed phosphate at standard supernatant concentration as an estimate of the phosphate needs of soils. Australian Journal of Experimental Agriculture and Animal Husbandry, 5, 52–58.CrossRefGoogle Scholar
  4. Bowman, R. A., & Olsen, S. R. (1985a). Assessment of phosphate buffering capacity. 1. Laboratory methods. Soil Science, 140, 287–291.CrossRefGoogle Scholar
  5. Bowman, R. A., & Olsen, S. R. (1985b). Assessment of phosphate buffering capacity. 2. Greenhouse methods. Soil Science, 140, 387–392.CrossRefGoogle Scholar
  6. Fox, R. L. (1981). External phosphorus requirements of crops. In R. H. Dowdy et al. (Eds.), Chemistry in the soil environment (ASA Special Publication 40) (pp. 223–239). Madison: ASA and SSSA.Google Scholar
  7. Fox, R. L., & Kamprath, E. J. (1970). Phosphate sorption isotherms for evaluating the phosphate requirement of soils. Soil Science Society of America Proceedings, 34, 902–907.CrossRefGoogle Scholar
  8. Holford, I. C. R. (1988). Buffering of phosphate in the soil solution during growth of ryegrass compared with buffering by sorption. Plant and Soil, 111, 3–9.CrossRefGoogle Scholar
  9. Larsen, S. (1967). Soil phosphorus. Advances in Agronomy, 19, 151–210.CrossRefGoogle Scholar
  10. Mattingly, C. E. G., Russell, R. D., & Jephcott, B. M. (1963). Experiments on cumulative dressings of fertilizers on calcareous soils in Southwest England. II. Phosphorus uptake by ryegrass in the green house. Journal of the Science of Food and Agriculture, 14, 629–637.CrossRefGoogle Scholar
  11. Mengel, K. (1985). Dynamics and availability of major nutrients in soils. Advances in Soil Sciences, 2, 65–131.CrossRefGoogle Scholar
  12. Mengel, K., & Busch, R. (1982). The importance of the potassium buffer power on the critical potassium level in soils. Soil Science, 133, 27–32.CrossRefGoogle Scholar
  13. Nair, K. P. P. (1984). Zinc buffer power as an important criterion for a dependable assessment of plant uptake. Plant and Soil, 81, 209–215.CrossRefGoogle Scholar
  14. Nair, K. P. P. (1992a). Measuring P buffer power to improve routine soil testing for phosphate. European Journal of Agnon, 1(2), 79–84.CrossRefGoogle Scholar
  15. Nair, K. P. P. (1992b). Soil testing procedure to economise on fertilizer use in land management. In The spirit of enterprise — The 1993 rolex awards (pp. 323–325).Google Scholar
  16. Nair, K. P. P., & Mengel, K. (1984). Importance of phosphate buffer power for phosphate uptake by rye. Soil Science Society of America Journal, 48, 92–95.CrossRefGoogle Scholar
  17. Nemeth, K. (1979). The availability of nutrients in the soil as determined by electroultrafiltration (EUF). Advances in Agronomy, 31, 155–188.CrossRefGoogle Scholar
  18. Okajima, H., Kubota, H., & Sakuma, T. (1983). Hysteresis in the phosphorus sorption and desorption process of soils. Soil Science & Plant Nutrition, 29, 271–283.CrossRefGoogle Scholar
  19. Olsen, S. R., Cole, C. V., Watanabe, F. S., & Dean, L. A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Cir. No. 939.Google Scholar
  20. Pagel, H., & van Huay, H. (1976). Wichtige Parameter der Phosphat-Sorptionskurven einiger Böden der Tropen und Subtropen und ihre Zeitliche Veränderung durch P—Düngung. Archiv für Acker- und Pflanzenbau und Bodenkunde, 20, 765–778.Google Scholar
  21. Raven, K. P., & Hossner, L. R. (1994). Sorption and desorption—Quantity–intensity parameters related to plant-available soil phosphorus. Soil Science Society of America Journal, 58, 405–410.CrossRefGoogle Scholar
  22. Schofield, R. K. (1955). Can a precise meaning be given to “available” soil phosphorus? Soil Fertility, 18, 373–375.Google Scholar
  23. Schüller, H. (1969). Die CAL-Methode, eine neue Methode zur Bestimmung des pflanzen verfügbaren Phosphates in Böden. Zeitschrift für Pflanzenernährung und Bodenkunde, 123, 48–63.CrossRefGoogle Scholar
  24. van der Paauw, F. (1971). An effective water extraction method for the determination of plant-available soil phosphorus. Plant and Soil, 34, 467–481.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kodoth Prabhakaran Nair
    • 1
  1. 1.International Agricultural Scientistc/o Mavila PankajakshyCalicutIndia

Personalised recommendations