The Buffer Power and Effect on Nutrient Availability

  • Kodoth Prabhakaran Nair


The chapter discusses at length the basic concepts pertaining to nutrient bioavailability. The focus of the chapter is on the thermodynamics of soil nutrient bioavailability enmeshing diffusive process within the soil and in the plant cell, based on mechanistic-mathematical models, and lays down the fundamentals of “The Nutrient Buffer Power Concept”, and, how precise quantification of the “Buffer Power” of each of the investigated nutrients, namely, Phosphorus, Potassium, and Zinc, lead to a clear understanding of plant nutrient bioavailability.


Basic concepts Nutrient concentration Nutrient buffer power 


  1. Adams, F. (1974). Soil solution. In E. W. Carson (Ed.), The plant root and its environment (pp. 441–481). Charlottesville: University Press of Virginia.Google Scholar
  2. Barber, S. A. (1974). Influence of the plant root on ion movement in soils. In E. W. Carson (Ed.), The plant root and its environment (pp. 525–564). Charlottesville: University Press of Virginia.Google Scholar
  3. Barber, S. A. (1984). Soil nutrient bioavailability: A mechanistic approach. New York: Wiley.Google Scholar
  4. Claassen, N., & Barber, S. A. (1976). Simulation model for nutrient uptake from soil by growing plant root system. Agronomy Journal, 68, 961–964.CrossRefGoogle Scholar
  5. Claassen, N., Hendriks, K., & Jungk, A. (1981). Rubidium-Verarmung des wurzelnahen Bodens durch Maispflanzen. Zeitschrift für Pflanzenernährung und Bodenkunde, 144, 533–545.CrossRefGoogle Scholar
  6. Hendriks, L., Claassen, N., & Jungk, A. (1981). Phosphatverarmung des wurzelnahen Bodens und Phosphataufnahme von Mais und Raps. Zeitschrift für Pflanzenernährung und Bodenkunde, 144, 486–499.CrossRefGoogle Scholar
  7. Keerthisinghe, G., & Mengel, K. (1979). Phosphatpufferung verschiedener Böden und ihre Veränderung infolge Phosphatalterung. Mitteilungen der Deutschen Gesellschaft, 29, 217–230.Google Scholar
  8. Kovar, J. L., & Barber, S. A. (1988). Phosphorus supply characteristics of 33 soils as influenced by seven rates of phosphorus addition. Soil Science Society of America Journal, 52, 160–165.CrossRefGoogle Scholar
  9. Lewis, D. G., & Quirk, J. P. (1967). Phosphate diffusion in soil and uptake by plants III. 31P-movement and uptake by plants as indicated by 32P-autoradiography. Plant and Soil, 26, 445–453.CrossRefGoogle Scholar
  10. Lu, S., & Miller, M. H. (1994). Prediction of phosphorus uptake by field-grown maize with the Barber-Cushman model. Soil Science Society of America Journal, 58, 852–857.CrossRefGoogle Scholar
  11. Mengel, K. (1985). Dynamics and availability of major nutrients in soils. Advances in Soil Sciences, 2, 65–131.CrossRefGoogle Scholar
  12. Nair, K. P. P. (1984a). Towards a better approach to soil testing based on the buffer power concept. In Proceeding of 6th International colloquium for the optimization of plant nutrition (Vol. 4, pp. 1221–1228), 2–8 September, Pierre-Martin Prevel, Montpellier, France.Google Scholar
  13. Nair, K. P. P. (1984b). Zinc buffer power as an important criterion for a dependable assessment of plant uptake. Plant and Soil, 81, 209–215.CrossRefGoogle Scholar
  14. Nair, K. P. P. (1992a). Measuring P buffer power to improve routine soil testing for phosphate. European Journal of Agnon, 1(2), 79–84.CrossRefGoogle Scholar
  15. Nair, K. P. P. (1992b). Soil testing procedure to economise on fertilizer use in land management. In The spirit of enterprise — The 1993 rolex awards (pp. 323–325).Google Scholar
  16. Nair, K. P. P., & Mengel, K. (1984). Importance of phosphate buffer power for phosphate uptake by rye. Soil Science Society of America Journal, 48, 92–95.CrossRefGoogle Scholar
  17. Nair, K. P. P., Sadanandan, A. K., Hamza, S., & Abraham, J. (1997). The importance of potassium buffer power in the growth and yield of cardamom. Journal of Plant Nutrition, 20(7 & 8), 987–997Google Scholar
  18. Nye, P. H. (1972). Diffusion of ions and uncharged solutes in soils and clays. Advances in Agronomy, 31, 225–272.CrossRefGoogle Scholar
  19. Schüller, H. (1969). Die CAL-Methode, eine neue Methode zur Bestimmung des pflanzen verfügbaren Phosphates in Böden. Zeitschrift für Pflanzenernährung und Bodenkunde, 123, 48–63.CrossRefGoogle Scholar
  20. Selim, H. M. (1992). Modeling the transport and retention of inorganics in soils. Advances in Agronomy, 47, 331–384.CrossRefGoogle Scholar
  21. Sparks, D. L. (1987). Potassium dynamics in soils. Advances in Soil Sciences, 6, 2–63.Google Scholar
  22. Sparks, D. L. (1989). Kinetics of soil chemical processes. San Diego: Academic.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kodoth Prabhakaran Nair
    • 1
  1. 1.International Agricultural Scientistc/o Mavila PankajakshyCalicutIndia

Personalised recommendations