Advertisement

Soil Fertility and Nutrient Management

  • Kodoth Prabhakaran Nair
Chapter

Abstract

The level of productivity of a cropping system is determined primarily by the interaction of crop genetic potential, environmental factors, and management options. Maintaining an adequate supply of mineral nutrients to crops is one of the most vital requirements for sustained crop growth and productivity. The chapter discusses several aspects of these factors and their interplay in maintaining optimal crop production. Specific importance in the chapter is also given to the role of organic matter in maintaining good soil fertility vis-à-vis ensuring good and healthy soil structure.

Keywords

Soil fertility Cropping system Nutrient budgeting Organic matter Mineralization Carbon Nitrogen Soil aggregates Soil tilth Structural resilience High inputs Need-based input application Sustainable land management Soil classes Climate Poverty Lack of awareness Unsupportive governmental policies Qualitative descriptive indicators Quantitative analytical indicators Statistical limits Scoring functions Soil quality index 

References

  1. Andiscott, T. M. (1995). Entropy and sustainability. European Journal of Soil Science, 46, 161–168.CrossRefGoogle Scholar
  2. Bezdicek, D. F., Papendick, R. I., & Lal, R. (1996). Introduction: Importance of soil quality to health and sustainable land management. In J. W. Doran & A. J. Jones (Eds.), Methods for assessing soil quality (SSSA special publication) (Vol. 49, pp. 1–8). Madison: Soil Science Society of America.Google Scholar
  3. Cassman, K. G., De Datta, S. K., Olk, D. C., Alcantara, J., Samson, M., Descalsota, J., & Dizon, M. (1995). Yield decline and nitrogen economy of long-term experiments on continuous irrigated rice systems in the tropics. In R. Lal & B. A. Stewart (Eds.), Soil management : Exprimental basis for sustainability and environmental quality (pp. 181–222). Boca Raton: CRC Press.Google Scholar
  4. Doran, J. W., & Parkin, T. B. (1994). Defining and assessing soil quality. In J. W. Doran, D. C. Coleman, D. F. Bezdicek, & B. A. Stewart (Eds.), Defining soil quality for a sustainable environment (SSSA Special Publication 35) (pp. 3–21). Madison: American Society of Agronomy and Soil Science Society of America.Google Scholar
  5. Doran, J. W., Sarrantonio, M., & Leibig, M. A. (1996). Soil health and sustainability. In D. L. Sparks (Ed.), Advances in Agronomy (Vol. 56, pp. 1–54). New York: Academic.Google Scholar
  6. Dregne, H. E. (1990). Erosion and soil productivity in Africa. Journal of Soil and Water Conservation, 45, 431–436.Google Scholar
  7. FAO. (1989). World agriculture towards 2000. Rome: Food and Agriculture Organization.Google Scholar
  8. Fresco, L. O., & Kroonenberg, S. B. (1992, July). Time and spatial scales in ecological sustainability. Land use policy, 9, 155–167.CrossRefGoogle Scholar
  9. Greenland, D. J. (1997). The sustainability of Rice farming. Wallingford: CAB Inernational.Google Scholar
  10. Gupta, V. V. S. R., & Germida, J. J. (1988). Distribution of microbial biomass and its activity in different soil aggregate size classes as affected by cultivation. Soil Biology and Biochemistry, 20, 777–786.CrossRefGoogle Scholar
  11. Gupta, R. K., Naresh, R. K., Hobbs, P. R., Jiaguo, J., & Ladha, J. K. (2003). Sustainability of post-Green Revolution agriculture: The rice-wheat systems of the Indo-Gangetic plains and China. In J. K. Ladha, J. Hill, R. K. Gupta, J. Duxbury, & R. J. Buresh (Eds.), Improving the productivity and sustainability of the Rice-Wheat systems: Issues and impact (ASA Special Publication 65) (pp. 1–26). Madison: American Society of Agronomy.Google Scholar
  12. Harris, R. F., & Bezdicek, D. F. (1994). Descriptive aspects of soil quality/health. In J. W. Doran, D. C. Coleman, D. F. Bezdicek, & B. A. Stewart (Eds.), Defining soil quality for a sustainable environment (SSSA special publication 35) (pp. 23–35). Madison: American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.Google Scholar
  13. Harris, R. F., Karlen, D. L., & Mulla, D. J. (1996). A conceptual framework for assessment and management of soil quality and health. In J. W. Doran & A. J. Jones (Eds.), Methods for assessing soil quality (SSSA special publication 49) (pp. 61–82). Madison: Soil Science Society of America.Google Scholar
  14. Henao, J., & Banante, C. (1999). Nutrient depletion in the agricultural soils of Africa (Vision 2020 Brief 62). Washington, DC: International Food Policy Research Institute.Google Scholar
  15. Hendrix, P. F., Crossley, D. A., Blair, J. M., & Coleman, D. C. (1990). Soil biota as components of sustainable ecosystems. In C. A. Edwards, R. Lal, P. Madden, R. H. Miller, & G. Haise (Eds.), Sustainable Agricultural Systems (pp. 637–654). Ankeny: Soil and Water Conservation Society.Google Scholar
  16. Hurrel, R. F. (2001). Modifying the composition of plant foods for better human health. In J. Nosberger, H. H. Geiger, & P. C. Struik (Eds.), Crop science: Progress and prospects (pp. 53–64). Wallingford: CAB International.Google Scholar
  17. Izac, A. M. M., & Swift, M. J. (1994). On agricultural sustainability and its measurement in small scale farming in sub Saharan Africa. Ecological Economics, 11, 105–125.CrossRefGoogle Scholar
  18. Jastrow, J. D., Boutton, T. W., & Miller, R. M. (1996). Carbon dynamics of aggregate-associated organic matter, estimated by C-13 natural abundance. Soil Science Society of America Journal, 60, 81–807.CrossRefGoogle Scholar
  19. Jenny, H. (1941). Factors of soil formation. New York: McGraw-Hill.CrossRefGoogle Scholar
  20. Karlen, D. L., & Stott, D. E. (1994). A framework for evaluating physical and chemical indicators of soil quality. In J. W. Doran, D. C. Coleman, E. D. Bezdicek, & B. A. Stewart (Eds.), Defining soil quality for a sustainable environment (SSSA special publication 35) (pp. 53–72). Madison: Soil Science Society of America.Google Scholar
  21. Karlen, D. L., Mausbach, M. J., Doran, R. G., Cline, R. F., & Harris and Schuman G.E. (1997). Soil quality: A concept, definition and framework for evaluation. Soil Science Society of America Journal, 61, 4–10.CrossRefGoogle Scholar
  22. Kay, B. D., Rasiah, V., & Perfect, E. (1994). In D. J. Greenland & I. Szabolcs (Eds.), Soil resilience and sustainable land use (pp. 351–367). Wallingford: CAB International.Google Scholar
  23. Kennedy, A. C., & Papendick, R. I. (1995). Microbial characteristics of soil quality. Journal of Soil and Water Conservation, 50, 243–248.Google Scholar
  24. Kimble, J. M. (1998). Minimum data sets needed for soil and climatic characterization. In R. Lal (Ed.), Soil quality and agricultural sustainability (pp. 44–50). Chelsea: Ann Arbor Press.Google Scholar
  25. Ladha, J. K., Pathak, H., Padre, A. T., Dave, D., & Gupta, R. K. (2003). Productivity trends in intensive rice-wheat cropping systems in Asia. In J. K. Ladha, J. Hill, R. K. Gupta, J. Duxbury, & R. J. Buresh (Eds.), Improving the productivity and sustainability of the Rice-Wheat systems: Issues and impact (ASA Special Publication 65) (pp. 45–76). Madison: American Society of Agronomy.Google Scholar
  26. Larson, W. E., & Pierce, F. J. (1991). Conservation enhancement of soil quality. In Evaluation for sustainable land management in the developing world (Vol. 2.. IBSRAM Proc. 12 (2)). Bangkok: International Board for Soil Research and Management.Google Scholar
  27. Lynch, J.M., Bragg, E. (1985). Microorganisms and soil aggregate stability. In: Advances in soil science. Vol 2, B.A. Stewart (Ed.). New York, Springer.Google Scholar
  28. Mausbach, J. M., & Seybold, C. A. (1998). Assessment of soil quality. In R. Lal (Ed.), Soil quality and agricultural sustainability (pp. 33–43). Chelsea: Ann Arbor Press.Google Scholar
  29. Nair, K. P. P. (2004). Sustaining crop production in the developing world through “the nutrient buffer power concept” – A case study with Black pepper (Piper nigrum) growing at low pH in the laterite soils of India. In Proceeding of 16th international symposium on plant-soil interactions at low pH (p. 392), Sendai, Japan, August 1–5.Google Scholar
  30. Nair, K. P. P., & Sharma, P. B. (1979). Mineralization and field effectiveness of ordinary and coated urea, urea-aldehyde condensation product and urea treated with nitrification inhibitor. The Journal of Agricultural Science, Cambridge, 93(3), 623–627.CrossRefGoogle Scholar
  31. NRC. (1993). Soil and water quality: An agenda for agriculture. Washington, DC: National Academy Press.Google Scholar
  32. Oades, J. M. (1984). Soil organic matter and structural stability: Mechanisms and implications for management. Plant and Soil, 76, 319–337.CrossRefGoogle Scholar
  33. Parr, J. F., Papendick, R. I., Hornick, S. B., & Meyer, R. E. (1992). Soil quality attributes and relationship to alternative sustainable agriculture. American Journal of Alternative Agriculture, 7, 5–11.CrossRefGoogle Scholar
  34. Parton, W. J., & Rasmussen, P. C. (1994). Long- term effects of residue management in wheat fallow: II CENTURY model simulations. Soil Science Society of America Journal, 58, 530–536.CrossRefGoogle Scholar
  35. Pierce, F. J., & Larson, W. E. (1993). Developing criteria to evaluate sustainable land management. In J. M. Kimble (Ed.), Proceedings of the 8th international soil management workshop: Utilization of soil survey information for sustainable agriculture land use (pp. 7–14). Lincoln: USDA-SCS National Soil Survey.Google Scholar
  36. Pingali, P., Hossein, M., & Gerpacio, R. V. (1995). Asian rice bowls: The returning crisis. Wallingford: CAB International.Google Scholar
  37. Prihar, S. S., Gajri, P. R., Benbi, D. K., & Arora, V. K. (Eds.). (2000). Intensive cropping: Efficient use of water, nutrients and tillage. New York: Food Products Press.Google Scholar
  38. Raman, S. (1987). Mineralogy in relation to pesticide use and soil pollution. Clay Research, 6(2), 50–58.Google Scholar
  39. Raman, S. (2001). Soil quality audit for resource conservation in Indian agriculture. Social Change, 31, 75–86.CrossRefGoogle Scholar
  40. Raman, S., & Rao, P. C. (1987). Kinetics of extraction of soil-applied metoxuron and its biological implications. Water, Air, and Soil Pollution, 38, 217–223.Google Scholar
  41. Raman, S., & Rao, P. C. (1989). Adsorption of metoxuron and tebuthiuron on model clay-organo complexes. Toxicological and Environmental Chemistry, 24, 20–213.CrossRefGoogle Scholar
  42. Romig, D. E., Garlynd, M. J., & Harris, R. F. (1996). Farmer-based assessment of soil quality: A Soil health storecard. In J. W. Doran & A. J. Jones (Eds.), Methods for assessing soil quality (SSSA publication 49) (pp. 30–60). Madison: Soil Science Society of America.Google Scholar
  43. Sanchez, P. A., Izac, A. M., Valencia, I., & Pieri, C. (1996). Soil fertility replenishment in Africa: A concept note. In S. A. Breth (Ed.), Achieving greater impact from research Investments in Africa (pp. 200–207). Nairobi: Inernational Center for Research in Agroforestry.Google Scholar
  44. Singh, K. P., & Kushwaha, C. P. (2000). Ecological aspect of soil fertility management in Indian agro ecosystem. In P. K. Jha, S. B. Karmacharya, S. R. Baral, & P. Lacoul (Eds.), Environment and agriculture: At the cross road of the new millennium (Proc. International conference on environment and agriculture, November 1–3, 1998, Kathmandu) (pp. 205–222). Kathmandu: Ecological Society (ECOS).Google Scholar
  45. SSSA. (1995, June 7). Soil quality: A conceptual definition. Agronomy News.Google Scholar
  46. Sullivan, L. A. (1990). Soil organic matter air encapsulation and water – Stable aggregation. Journal of Soil Science, 41, 529–534.CrossRefGoogle Scholar
  47. Swift, M. J., & Anderson, J. M. (1994). Biodiversity and ecosystem functions in agricultural systems. In E. D. Schulze & H. Mooney (Eds.), Biodiversity and ecosystem function (pp. 15–42). New York: Springer.CrossRefGoogle Scholar
  48. Tisdall, J. M., & Qades, J. M. (1982). Organic matter and water-stable aggregates in soils. Journal of Soil Science, 33, 141–163.CrossRefGoogle Scholar
  49. Virmani, S. M., Katyal, J. C., Eswaran, H., & Abrol, I. P. (Eds.). (1994). Stressed ecosystems and sustainable agriculture (pp. 229–235). New Delhi: Oxford and IBH Publishing Company.Google Scholar
  50. Visser, S., & Parkinson, D. (1992). Soil biological criteria as indicators of soil quality: Soil microorganisms. American Journal of Alternative Agriculture, 7, 33–37.CrossRefGoogle Scholar
  51. Vlek, P. L. G., & Vielhauer, K. (1994). Nutrient management strategies in stressed environments. In S. M. Virmani, J. C. Katyal, H. Eswaran, & I. P. Abrol (Eds.), Stressed ecosystems and sustainable agriculture (pp. 203–228). New Delhi: Oxford and IBH Publishing Company.Google Scholar
  52. Woomer, P. L., & Swift, M. J. (Eds.). (1994). The Biological management of tropical soil fertility. Chicester: John Wiley.Google Scholar
  53. Young, E. M. (1997). World Hunger. London: Routledge.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kodoth Prabhakaran Nair
    • 1
  1. 1.International Agricultural Scientistc/o Mavila PankajakshyCalicutIndia

Personalised recommendations