Land Management for Sustainable Agriculture

  • Kodoth Prabhakaran Nair


Of all the natural resources for agriculture, land/soil is accorded the first status among equals. Early civilization, the world over, venerated land as the “mother”, and, many continue to do so. India is the most illustrious example. The coinage by the author of this book for soil stands as follows: SOIL: S-Soul, O-Of, I-Infinite-, L-Life.


Soil Land Per capita land availability Pre historic farming Global soil degradation Water and wind erosion Chemical degradation Physical degradation Biological degradation Human induced soil degradation Crop production Sustainable agriculture Sustainable land management Conservation Sustainable use of natural resources Appropriate land use patterns Agroecological zones Soil resilience Soil degradation Soil erosion control Maintaining soil fertility 


  1. Adams, C. R., & Eswaran, H. (2000). Global land resources in the context of food and environmental security. In Advances in land resources management for the 21st century. Proceeding of International conference on land resource management for food, employment and environmental security (ICLRM), soil conservation society of India, November 9–13, 2000 (pp. 35–50). New Delhi: New Delhi Angkor Publishers.Google Scholar
  2. Anderson, G. D. (1998). Grow the soils to grow the crops in Africa. In R. Lal (Ed.), Soil quality and agricultural sustainability (pp. 237–250). Chelsea: Ann Arbor Press.Google Scholar
  3. Berger, G. W. (2004). Photonic dating of prehistoric irrigation canals of Phoenix, Arizona, U. S. A. Geoarchaeology, 19, 381.CrossRefGoogle Scholar
  4. Brown, L. R. (1997). The agricultural link: How environmental deterioration could disrupt economic progress (World Watch Paper 136). Washington, DC: World Watch Institute.Google Scholar
  5. Clement, R. M., & Horn, S. P. (2001). Pre-Columbian land-use history in Costa Rica: A 3000 – year record of forest clearance, agriculture and fires from Laguna Zoncho. Holocene, 11, 419–426.CrossRefGoogle Scholar
  6. Crosson, P. (1995). Soil erosion costs and estimates. Science, 269, 461–464.CrossRefGoogle Scholar
  7. Dent, D., & Young, A. (1981). Soil survey and land evaluation. Wallingford: CAB International.Google Scholar
  8. Dumanski, J. (1993). Sustainable land management for the 21st century (Vol. 1). Bangkok/Ottawa: International Board for Soil Research and Management and Agriculture Canada.Google Scholar
  9. Erickson, C. L. (1992). Prehistoric landscape management in the African Highlands – Raised field agriculture and its environmental impact. Population and Environment, 13, 285–300.CrossRefGoogle Scholar
  10. Eswaran, H. (1994). Soil resilience and sustainable land management in the context of agenda 21. In D. J. Greenland & C. Szabolcs (Eds.), Soil resilience and sustainable land use (pp. 21–32). Wallingford: CAB International.Google Scholar
  11. Eswaran, H., Beinroth, R., & Reich, P. (1999). Global land resources and population supporting capacity. American Journal of Alternative Agriculture, 14, 129–135.CrossRefGoogle Scholar
  12. FAO. (1976). A framework for land evaluation, FAO Soils Bulletin (Vol. 32). Rome: Food and Agriculture Organization.Google Scholar
  13. FAO (1978–1991) Agro-ecological zone project. Rome: Food and Agriculture Organization.Google Scholar
  14. FAO. (1990). FAO yearbook 1989: Production (FAO statistical series 94) (Vol. 43). Rome: Food and Agriculture Organization.Google Scholar
  15. FAO. (1994). Land degradation in South Asia: Its severity, causes and effects on People. Rome: Food and Agriculture Organization.Google Scholar
  16. FAO. (2000). Agriculture Towards 2015/30 technical interim report, Global Perspectives Unit. Rome: Food and Agriculture Organization.Google Scholar
  17. Hartshorn, A. S., Chadwick, O. A., Vitousek, P. M., & Kirch, P. V. (2006). Prehistoric agricultural depletion of soil nutrients in Hawaii. Proceedings of the National Academy of Sciences of the United States of America, 103, 11092–11097.CrossRefGoogle Scholar
  18. Highman, C. F. W., Kijngam, A., Manly, B. F. J., & Moore, S. J. E. (1981). The bovid third phalanx and prehistoric ploughing. Journal of Archaeological Science, 8, 353–365.CrossRefGoogle Scholar
  19. Horrocks, M., Shane, P. A., Barber, I. G., D’Costa, D. M., & Nichol, S. L. (2004). Microbotanical remains reveal Polynesian agriculture and mixed cropping in early New Zealand. Review of Palaeobotany and Palynology, 131, 147–157.CrossRefGoogle Scholar
  20. Karlen, D. L., Mausbach, M. J., Doran, R. G., Cline, R. F., & Harris and Schuman G.E. (1997). Soil quality: A concept, definition and framework for evaluation. Soil Science Society of America Journal, 61, 4–10.CrossRefGoogle Scholar
  21. Knorzer, K. N. (2000). 3000 years of agriculture in a valley of the high Himalayas. Vegetation History and Archaeobotany, 9, 219–222.CrossRefGoogle Scholar
  22. Koohafkan, A. P. (2000). Land resources potential and sustainable land management: An overview. In Advances in land resources management for the 21st Century. Proceeding of international conference on land resource management for food, employment and environmental security (ICLRM), November 9–13, 2000 (Soil conservation society of India, New Delhi) (pp. 1–22). New Delhi: Angkor Publishers.Google Scholar
  23. Lal, R. (1994). Sustainable land use systems and soil resilience. In D. J. Greenland & I. Szabolcs (Eds.), Soil resilience and sustainable land use (pp. 41–67). Wallingford: CAB International.Google Scholar
  24. Lal, R., & Stewart, B. A. (1992). Soil restoration vol 17 advances in soil science. New York: Springer.CrossRefGoogle Scholar
  25. Lal, R., Kimble, J. M., Levine, E., & Whitman, C. (1995). World soils and green house effect: An overview. In R. Lal, J. M. Kimble, E. Levine, & B. A. Stewart (Eds.), Soils and global change (pp. 1–7). Boca Raton: Lewis Publishers.Google Scholar
  26. Lal, R., Reicosky, D. C., & Hanson, J. (2007). History of plowing over 10,000 years. Soil and Tillage Research, 93, 1–12.CrossRefGoogle Scholar
  27. Lange, C. H. (1992a). Canal irrigation in prehistoric Mexico – The sequence of technological change. Doolittle, WE New Mexico. Historic Review, 67, 194–195.Google Scholar
  28. Lange, L. (1992b). Microbes and microbial products in plant protection. Progress in Botany, 53, 252–270.CrossRefGoogle Scholar
  29. Latham, M., & Syers, J. K. (1994). Collaborative research networks to promote sustainable land use. In D. J. Greenland & I. Szabolcs (Eds.), Soil resilience and sustainable land use (pp. 513–520). Wallingford: CAB International.Google Scholar
  30. Lepofsky, D. (1995). A radio carbon chronology of pre-historic agriculture in the Society Islands. French Polynesia, Radio-carbon, 37, 917–930.Google Scholar
  31. Logan, T. J. (1990). Chemical degradation of soil. In R. Lal & B. A. Stewart (Eds.), Soil Degradation (Vol II of advances in soil science) (pp. 187–216). New York: Springer.Google Scholar
  32. Mann, C. C. (2002). The real dirt on rainforest fertility. Science, 297, 920–923.CrossRefGoogle Scholar
  33. Masse, W. B. (1981). Prehistoric irrigation systems in the Salt River Valley. Arizona Science USA, 214, 408–415.Google Scholar
  34. McCoy, M. D., & Hartshorn, A. S. (2007). Wind erosion and intensive pre-historic agriculture: A case study from the Kalaupapa field systems. Molokai Island, Hawaii. Geoarchaeology, 22, 511–532.CrossRefGoogle Scholar
  35. Meadows, D. H., Meadows, D. C., Randers, J., & Behrens, W. W. (1972). The limits to growth. New York: Universe.Google Scholar
  36. Nair, K. P. P. (2013). The buffer power concept and its relevance in African and Asian soils. Advances in Agronomy, 121, 447–529.CrossRefGoogle Scholar
  37. Nordt, L. F., Hayashida, H. T., & Crawford, C. (2004). Late prehistoric soil fertility, irrigation management, and agricultural production in northwest coastal Peru. Geoarchaelogy, 19, 21–46.CrossRefGoogle Scholar
  38. Oldeman, L. R. (1994). The global extent of soil degradation. In D. J. Greenland & I. Szabolcs (Eds.), Soil resilience and sustainable land use (pp. 99–118). Wallingford: CAB International.Google Scholar
  39. Oldeman, I. R., Hakkeling, R. T. A., & Sombroek, W. G. (1990). World map of the status of human-induced soil degradation: An Explnatory note. Wageningen: International Soil Reference Centre.Google Scholar
  40. Palacios-Fest, M. R., Mabry, J. B., Nialis, J. F., Holmlund, J. P., Miksa, E., & Davis, O. K. (2001). Early irrigation systems in southeastern Arizona: The ostracode perspective. Journal of South American Earth Sciences, 14, 541–545.CrossRefGoogle Scholar
  41. Park, C. C. (1983). Paleohydrologic reconstruction from stratigraphic evidence – A case study from prehistoric irrigation canals in Peru. Journal of the Geological Society, 140, 321.CrossRefGoogle Scholar
  42. Pimental, D. J., Allen, J., & Beers, A. (1993). Soil erosion and agricultural productivity. In D. J. Pimental (Ed.), World soil Erosion and conservation. Cambridge, M.A: Cambridge University Press.CrossRefGoogle Scholar
  43. Pinstrup, A. P., & Pandya-Lorsch, R. (1994). Alleviating poverty and effectively managing natural resources (FAO Discussion Paper I). Washington, DC: International Food Policy Research Institute.Google Scholar
  44. Premathilake, R. (2006). Relationship of environmental changes in central Sri Lanka to possible pre-historic land-use and climate changes. Palaeogeography, 240, 468–496.CrossRefGoogle Scholar
  45. Raman, K. V. (2003). Multiple livelihood opportunities towards sustainable human development. In Reshaping our earth view: Creative thoughts and alternative. New York: Tata McGraw-Hill Pub. Co.Google Scholar
  46. Raman, S. (2006). Agricultural sustainability: Principles, processes and prospects (pp. 13904–11580). Birmingham: The Hawoth Press Inc.Google Scholar
  47. Scherer, S. J., & Yadav, S. (1996). Land degradation in the developing world: Implications for food, agriculture and environment to 2020 (Food and Agriculture and the Environment Discussion Paper 14). Washington, DC: International Food Policy Research Institute.Google Scholar
  48. Scherr, S. J. (1999). Soil Degradation: A threat to developing-country food security by 2020? (Vision 2020 Brief 58). Washington, DC: International Food Policy Research Institute.Google Scholar
  49. Scholes, R. J. (1990). The influence of soil fertility on the ecology of south African dry savannas. Journal of Biogeography, 17, 415–419.CrossRefGoogle Scholar
  50. Sims, G. K. (1990). Biological degradation of soil. In R. Lal & B. A. Stewart (Eds.), Soil degradation vol II advances in soil science (pp. 289–320). New York: Springer.Google Scholar
  51. Smaling, E. M. A., Stoonvogel, J. J., & Windmeijer, N. P. (1993). Calculating soil nutrient balances in Africa at different scales. II. District Scale. Fertilizer Research, 35, 237–250.CrossRefGoogle Scholar
  52. Stevenson, C. M., Jackson, T. L., Meith, A., Bork, H. R., & Ladeffaged, T. N. (2006). Pre-historic and early historic agriculture at Maunga Orito, Easter Island (Rapa Nui). Chile, Antiquity, 80, 919–936.CrossRefGoogle Scholar
  53. Syers, J. K., & Latham, M. (1994). Sustainable land management for mitigating stresses. In S. M. Virmani, J. C. Katyal, H. Eswaran, & I. P. Ibrol (Eds.), Stressed ecosystems and sustainable agriculture (pp. 332–338). New Delhi: Oxford and IBH Publishing Company.Google Scholar
  54. Sys, C. (1976). Land evaluation: Part I. Ghent: ITC State University Ghent.Google Scholar
  55. Szabolcs, I. (1994). The concept of soil resilience. In D. J. Greenland & I. Szabolcs (Eds.), Soil resilience and sustainable land use (pp. 33–39). Wallingford: CAB International.Google Scholar
  56. UNCED. (1992). Chapter 24: Global action for women towards sustainable and equitable development. In Agenda (Vol. 21, pp. 349–354). Rio de Janeiro: United Nations Conference on Environment and Development.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kodoth Prabhakaran Nair
    • 1
  1. 1.International Agricultural Scientistc/o Mavila PankajakshyCalicutIndia

Personalised recommendations