Advertisement

Tests of Threaded Connections Made by Additive Manufacturing Technologies

  • Wojciech KajzerEmail author
  • Katarzyna Gieracka
  • Mateusz Pawlik
  • Marcin Basiaga
  • Anita Kajzer
  • Janusz Szewczenko
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 925)

Abstract

The aim of the work was to determine breaking strength of the threaded connection between produced in additive manufacturing technology threaded component (fitting) and steel screw. Samples made in Selective Laser Sintering (SLS) and Multi Jet Fusion (MJF) technologies were used. Depending on method of production, in this research two kinds of materials were applied. Polyamide PA12 and composite material made of polyamide with glass particles PA-GF in volume proportion 70% to 30% were used. The results give a base of the statement, that the printed threaded connection allows to obtain stable and durable connection, enabling practical application of that type of connection.

Keywords

Additive manufacturing SLS - Selective Laser Sintering MJF - Multi Jet Fusion Mechanical research, strength of threaded connections 

Notes

Acknowledgements

The work has been financed from research project no. \(BK-210/RIB2/2018 07/020/BK\_18/0028\).

References

  1. 1.
    Laska-Leśniewska, A.: Wykorzystanie metod szybkiego prototypowania (rapid prototyping) w nowoczesnej medycynie. Zeszyty naukowe towarzystwa doktorantów UJ Nauki Ścisłe. Nr. 15, 39–48, 2 2017Google Scholar
  2. 2.
    Wyleżoł, M., Ostrowska, B., Wróbel, E., Muzalewska, M., Grabowski, M., Wyszyński, D., Zubrzycki, J., Przech, P., Klepka, T.: Inżynieria biomedyczna Metody przyrostowe w technice medycznej. Monografia. Wydawnictwo Politechniki Lubelskiej, Lublin (2016)Google Scholar
  3. 3.
  4. 4.
    Kajzer, W., Krauze, A., Kaczmarek, M., Marciniak, J.: FEM analisys of the expandable intramedullar nail. In: Information Technologies in Biomedicine. Advances in Intelligent and Soft Computing, vol. 47, pp. 537–544 (2008)Google Scholar
  5. 5.
    Ziebowicz, A., Kajzer, A., Kajzer, W., Marciniak, J.: Metatarsal osteotomy using double-threaded screws - biomechanical analysis. In: Information Technologies in Biomedicine. Advances in Intelligent and Soft Computing, vol. 69, pp. 465–472 (2010)Google Scholar
  6. 6.
    Basiaga, M., Kajzer, W., Walke, W., Kajzer, A., Kaczmarek, M.: Evaluation of physicochemical properties of surface modified Ti6Al4V and Ti6Al7Nb alloys used for orthopedic implants. Mater. Sci. Eng. C 68, 851–860 (2016)CrossRefGoogle Scholar
  7. 7.
    Joshi, M., Shetty, N., Shetty, S.D., Bharath, N.L.S., Varma, C.S.: Mechanical characterization of additive manufacturing processes. Indian J. Sci. Technol. 9(36), 1–15 (2016)CrossRefGoogle Scholar
  8. 8.
    Spyra, M., Kajzer, W., Czyrnia, R.: Wytrzymałościwa analiza z wykorzystaniem metody elementów skończonych zmodyfikowanych ortez Grafo. Aktualne Problemy Biomechaniki 11, 127–132 (2016)Google Scholar
  9. 9.
    Basiaga, M., Paszenda, Z., Walke, W.: Study of electrochemical properties of carbon coatings used in medical devices. Electrochem. Rev. 87(12B), 12–15 (2011)Google Scholar
  10. 10.
    Walke, W., Paszenda, Z., Pustelny, T., Opilski, Z., Drewniak, S., Kościelniak-Ziemniak, M., Basiaga, M.: Evaluation of physicochemical properties of SiO2-coated stainless steel after sterilization. Mater. Sci. Eng. C Mater. Biol. Appl. 63, 155–163 (2016)CrossRefGoogle Scholar
  11. 11.
    Loncierz, D., Kajzer, W.: Wpływ parametrów druku 3D w technologii FDM na własności mechaniczne i użytkowe obiektów wykonanych z PLA. Aktualne Problemy Biomechaniki 10, 43–48 (2016)Google Scholar
  12. 12.
    Liu, C.-Y.: A comparative study of rapid prototyping systems. Thesis, University of Missouri (2013)Google Scholar
  13. 13.
    Mierzejewska, Ż.A., Markowicz, W.: Selective laser sintering - binding mechanism and assistance in medical applications. Adv. Mater. Sci. 15(3(45)), 5–16 (2015)Google Scholar
  14. 14.
    Lewandowski, G., Milchert, E., Rytwińska, E.: Właściwości fizyczne i zastosowanie poliamidu 12. Source. http://www.ichp.pl/polimery-lewandowski-rytwinska-milchert-wlasciwosci-poliamidu
  15. 15.
    Podhora, P., Madaj, R., Poljak, S.: Verification of construction properties materials for rapid prototyping using SLS technology. In: 58th ICMD, pp. 306–313 (2017)Google Scholar
  16. 16.
    Cichoń, K., Brykalski, A.: Zastosowanie druku 3D w przemyśle. Przegląd Elektrotechniczny 93(3), 156–158 (2017)Google Scholar
  17. 17.
    Kromka-Szydek, M., Wrona, M., Jędrusik-Pawłowska, M.: Analiza wytrzymałościowa systemu UNILOCK 2,4 stosowanego w chirurgii szczkowo- twarzowej. Modelowanie Inżynierskie 16(47), 117–122 (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Wojciech Kajzer
    • 1
    Email author
  • Katarzyna Gieracka
    • 2
  • Mateusz Pawlik
    • 3
  • Marcin Basiaga
    • 1
  • Anita Kajzer
    • 1
  • Janusz Szewczenko
    • 1
  1. 1.Department of Biomaterials and Medical Devices Engineering, Faculty of Biomedical EngineeringSilesian University of TechnologyZabrzePoland
  2. 2.Science Club “SYNERGIA”, Department of Biomaterials and Medical Devices Engineering, Faculty of Biomedical EngineeringSilesian University of TechnologyZabrzePoland
  3. 3.CABIOMEDE Sp. z o.o.KielcePoland

Personalised recommendations