Advertisement

Corrosion Resistance of Passivated NiTi After Long-Term Exposure to Simulated Body Fluids

  • Marcin KaczmarekEmail author
  • Przemysław Kurtyka
  • Zbigniew Paszenda
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 925)

Abstract

Corrosion resistance of the implant alloy is a very important determinant of its biocompatibility. Both, the environment and the applied surface treatment have a significant influence on corrosion. The main aim of the research was evaluation of corrosion resistance of NiTi alloy after long-term exposure to various simulated body fluids. The evaluation of the electrochemical behavior of NiTi alloy was realized by recording of anodic polarization curves with the use of the potentiodynamic method. The tests were carried out for differently modified surfaces both before and after the 6 months exposure to the simulated body fluids. Surface condition of metal biomaterial determines its corrosion resistance. In the course of the work it was observed that the corrosion resistance of all the samples (with different surface conditions) before long-term exposure is similar. The exposure did not change the corrosion resistance of the NiTi alloy significantly. Only the electropolished samples revealed the decrease of the corrosion resistance. The obtained results could be the basis optimization of physicochemical properties of the NiTi alloy. The future research should be focused on selected specific implants specially with respect to their application features. On the basis of the obtained results it can be stated that the suggested surface treatment can be applicable for NiTi alloys due to the increase of the corrosion resistance. The long-term exposure to the simulated body fluids did not deteriorate the corrosion resistance of the investigated alloy. The proposed surface treatment methods can be applied to implants intended for diverse medical applications, especially in cardiology and urology.

Keywords

NiTi alloy Biomaterials Corrosion resistance Potentiodynamic tests Simulated body fluids 

References

  1. 1.
    Jani, J.M., Leary, M., Subic, A., Gibson, M.A.: A review of shape memory alloy research, applications and opportunities. Mater. Des. 56, 1078–1113 (2014)CrossRefGoogle Scholar
  2. 2.
    Morgan, N.B.: Medical shape memory alloy applications - the market and its products. Mater. Sci. Eng. A 378, 16–23 (2004)CrossRefGoogle Scholar
  3. 3.
    Shabalovskaya, S., Van Humbeeck, J.: Biocompatibility of shape memory alloys. In: Yoneyama, T., Miyazaki, S. (eds.): Shape Memory Alloys for Medical Applications. Woodhead Publishing Limited, Cambridge (2008)Google Scholar
  4. 4.
    Kaczmarek, M.: Kształtowanie własności fizykochemicznych warstw powierzchniowych nadsprężystego stopu NiTi przeznaczonego na stenty wien̈cowe. Wydawnictwo Politechniki Śląskiej, Gliwice (2015). ISBN 978-83-7880-305-8Google Scholar
  5. 5.
    Kajzer, A., Kajzer, W., Gołombek, K., Knol, M., Dzielicki, J., Walke, W.: Corrosion resistance, EIS and wettability of the implants made of 316 LVM steel used in chest deformation treatment. Arch. Metall. Mater. 61(2a), 767–770 (2016)CrossRefGoogle Scholar
  6. 6.
    Szewczenko, J., Marciniak, J., Kajzer, W., Kajzer, A.: Evaluation of corrosive resistance of titanium alloys used for medical implants. Arch. Metall. Mater. 61(2a), 695–700 (2016)CrossRefGoogle Scholar
  7. 7.
    Basiaga, M., Kajzer, W., Walke, W., Kajzer, A., Kaczmarek, M.: Evaluation of physicochemical properties of surface modified Ti6Al4V and Ti6Al7Nb alloys used for orthopedic implants. Mater. Sci. Eng. C 68, 851–860 (2016)CrossRefGoogle Scholar
  8. 8.
    Kajzer, A., Kajzer, W., Gołombek, K., Knol, M., Dzielicki, J., Walke, W.: Corrosion resistance, EIS and Wettability of the implants made of 316 LVM steel used in chest deformation treatment. Arch. Metall. Mater. 61(2a), 767–770 (2016). (30 pkt IF = 1,09)CrossRefGoogle Scholar
  9. 9.
    Szewczenko, J., Marciniak, J., Kajzer, W., Kajzer, A.: Evaluation of corrosion resistance of titanium alloys used for medical implants. Arch. Metall. Mater. 61(2a), 695–700 (2016).  https://doi.org/10.1515/amm-2016-0118CrossRefGoogle Scholar
  10. 10.
    Kaczmarek, M.: Investigation of pitting and crevice corrosion resistance of NiTi alloy by means of electrochemical methods. Prz. Elektrot. 86(12), 102–105 (2010)Google Scholar
  11. 11.
    Kaczmarek, M., Kurtyka, P.: Corrosion resistance of surface treated NiTi alloy tested in artificial plasma. In: Gzik, M., Tkacz, E., Paszenda, Z., Piętka, E. (eds.) Innovations in Biomedical Engineering. Advances in Intelligent Systems and Computing, vol. 526. Springer, Cham (2017)Google Scholar
  12. 12.
    Kajzer, W., Jaworska, J., Jelonek, K., Szewczenko, J., Kajzer, A., Nowińska, K., Hercog, A., Kaczmarek, M., Kasperczyk, J.: Corrosion resistance of Ti6Al4V alloy coated with caprolactone-based biodegradable polymeric coatings. Eksploat. i Niezawodn. 20(1), 30–38 (2018)CrossRefGoogle Scholar
  13. 13.
    Pulletikurthi, C., Munroe, N., Gill, P., Pandya, S., Persaud, D., Haider, W., Iyer, K., McGoron, A.: Cytotoxicity of Ni from surface-treated porous nitinol (PNT) on osteoblast cells. J. Mater. Eng. Perform. 20, 824–829 (2011)CrossRefGoogle Scholar
  14. 14.
    Tian, H., Schryvers, D., Liu, D., Jiang, Q., Van Humbeeck, J.: Stability of Ni in nitinol oxide surfaces. Acta Biomater. 7, 892–899 (2011)CrossRefGoogle Scholar
  15. 15.
    Shabalovskaya, S., Rondelli, G., Anderegg, J., Xiong, J.P., Wu, M.: Comparative corrosion performance of black oxide, sandblasted, and fine-drawn nitinol wires in potentiodynamic and potentiostatic tests: effects of chemical etching and electropolishing. J. Biomed. Mater. Res. Part B Appl. Biomater. 69B, 223–231 (2004)CrossRefGoogle Scholar
  16. 16.
    Khalil-Allafi, J., Amin-Ahmadi, B., Zare, M.: Bio-compatibility and corrosion behavior of the shape memory NiTi alloy in the physiological environments simulated with body fluids for medical applications. Mater. Sci. Eng. C 30, 1112–1117 (2010)CrossRefGoogle Scholar
  17. 17.
    Basiaga, M., Paszenda, Z., Walke, W.: Study of electrochemical properties of carbon coatings used in medical devices. Przeglad Elektrotechniczny 87(12B), 12–15 (2011)Google Scholar
  18. 18.
    Walke, W., Paszenda, Z., Pustelny, T., Opilski, Z., Drewniak, S., Kościelniak-Ziemniak, M., Basiaga, M.: Evaluation of physicochemical properties of SiO2-coated stainless steel after sterilization. Mater. Sci. Eng. C-Mater. Biol. Appl. 63, 155–163 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Marcin Kaczmarek
    • 1
    Email author
  • Przemysław Kurtyka
    • 1
  • Zbigniew Paszenda
    • 1
  1. 1.Faculty of Biomedical Engineering, Department of Biomaterials and Medical Devices EngineeringSilesian University of TechnologyZabrzePoland

Personalised recommendations