Advertisement

Analysis of the Influence of Selected Thiosemicarbazides, 1,2,4-Triazoles and 1,3,4-Thiadiazoles’ Structure on Their Microbiological Activity Against Candida Albicans ATCC30028 and Candida Albicans Clinical Isolate 26

  • Anna FilipowskaEmail author
  • Michał Jóźwiak
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 925)

Abstract

Considering the increasing incidence of fungal infections, in silico research of selected thiosemicarbazides, 1,2,4-triazoles and 1,3,4-thiadiazoles exhibiting varied biological activity against the Candida albicans fungi has been conducted in relation to this paper. The determined molecular descriptors for all 30 examined compounds and the published microbiological research served as the basis for obtaining multilinear QSAR models describing the relationship between biological activity against the Candida albicans ATCC 30028 and Candida albicans clinical isolate 26 fungi and the structure of examined compounds. The Leave-One-Out Cross Validation method was used to verify obtained models. The obtained Quantitative Structure-Activity Relationships are characterized by high determination coefficients and good prediction power. Additionally, the results of cluster analysis of compounds on the basis of their physicochemical parameters have also been presented.

Keywords

Thiosemicarbazides \(1{, }2{, }4\)-triazoles \(1{, }3{, }4\)-thiadiazoles Quantitative Structure-Activity Relationship Multiple linear regression Cluster analysis 

References

  1. 1.
    Ciszewski, M., Czekaj, T.: Healthcare-associated fungal infections—a rising threat. Nowa Medycyna 2, 73–76 (2014)Google Scholar
  2. 2.
    Biliński, P., Seferyńska, I., Warzocha, K.: Diagnosis and treatment of fungal infections in oncohematology. Onkol. Prak. Klin. 4, 15–24 (2008)Google Scholar
  3. 3.
    Jóźwiak, M., Stpięń, K., Wrzosek, M., Olejarz, W., Kubiak-Tomaszewska, G., Filipowska, A., Filipowski, W., Struga, M.: Synthesis, structural studies and biological evaluation of connections of thiosemicarbazide, 1,2,4-triazole and 1,3,4-thiadiazole with palmitic acid. Molecules 23, 822 (2018)CrossRefGoogle Scholar
  4. 4.
    Hyper Chem: Hyper Chem (TM), Professional, Hypercube, Inc., 1115 NW 4th Street, Gainesville, Florida 32601, U.S.A. (2012)Google Scholar
  5. 5.
    Stefanska, J., Nowicka, G., Struga, M., Szulczyk, D., Koziol, A.E., Augustynowicz-Kopec, E., Napiorkowska, A., Bielenica, A., Filipowski, W., Filipowska, A., Drzewiecka, A., Giliberti, G., Madeddu, S., Boi, S., La Colla, P., Sanna, G.: Antimicrobial and anti-biofilm activity of thiourea derivatives incorporating a 2-aminothiazole scaffold. Chem. Pharm. Bull. (Tokyo) 63, 225–236 (2015).  https://doi.org/10.1248/cpb.c14-00837CrossRefGoogle Scholar
  6. 6.
    Kusmierz, E., Siwek, A., Kosikowska, U., Malm, A., Stefanska, J., Dzitko, K., Wujec, M.: Antibacterial activity and structure-activity relationship studies of 4- substituted-5-(diphenylmethyl)-2,4-dihydro-3H-1,2,4-triazole-3-thiones. Lett. Drug Des. Discov. 10, 95–101 (2013).  https://doi.org/10.2174/157018013804725198CrossRefGoogle Scholar
  7. 7.
    Filipowska, A., Filipowski, W., Tkacz, E.: Study of structure-cytotoxicity relationships of thiourea derivatives containing the 2-aminothiazole moiety. In: Innovations in Biomedical Engineering. Advances in Intelligent Systems and Computing, vol. 526, pp. 276–285. Springer (2017).  https://doi.org/10.1007/978-3-319-47154-9_32Google Scholar
  8. 8.
    Khaledian, S., Saaidpour, S.: Quantitative structure-property relationship modelling of distribution coefficients (logD7.4) of diverse drug by sub-structural molecular fragments method. Orient. J. Chem. 31, 1969–1976 (2015).  https://doi.org/10.13005/ojc/310414CrossRefGoogle Scholar
  9. 9.
    Astela, A., Biziukb, M., Przyjazny, A., Namieśnik, J.: Chemometrics in monitoring spatial and temporal variations in drinking water quality. Water Res. 40, 1706–1716 (2006).  https://doi.org/10.1016/j.watres.2006.02.018CrossRefGoogle Scholar
  10. 10.
    Filipowska, A., Filipowski, W., Tkacz, E., Wujec, M.: Statistical analysis of the impact of molecular descriptors on antimicrobial activity of thiourea derivatives incorporating 3-amino-1,2,4-triazole scaffold. In: Gzik, M., Tkacz, E., Paszenda, Z., Piętka, E. (eds.) Innovations in Biomedical Engineering. Advances in Intelligent Systems and Computing, vol. 623, 1st edn, pp. 276–285. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-70063-2_19CrossRefGoogle Scholar
  11. 11.
    Patrick, G.L.: An Introduction to Medicinal Chemistry, 5th edn, pp. 383–406. Oxford University Press, Oxford (2013). ISBN 9780199697397Google Scholar
  12. 12.
    Todeschini, R., Consonni, V.: Molecular Descriptors for Chemoinformatics. Methods and Principles in Medicinal Chemistry Ed. by Mannhold, R., Kuloinyi, H., Folkers, G., vol. 41. Wiley (2009)Google Scholar
  13. 13.
    Kubinyi, H.: QSAR; Hansch Analysis and Related Approaches. Methods and Principles in Medicinal Chemistry Ed. by Mannhold, R., Krogsgaard-Larsen, P., Timmerman, H., vol. 1. Wiley (1993)Google Scholar
  14. 14.
    Golbraikh, A., Tropsha, A.: Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. J. Comput. Aided Mol. Des. 16, 357–369 (2002). PMID: 12489684CrossRefGoogle Scholar
  15. 15.
    Filipowska, A., Filipowski, W., Tkacz, E., Nowicka, G., Struga, M.: Statistical analysis of the impact of molecular descriptors on cytotoxicity of thiourea derivatives incorporating 2-aminothiazole scaffold. Chem. Pharm. Bull. 64, 1196–1202 (2016).  https://doi.org/10.1248/cpb.c16-00317CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Biosensors and Processing of Biomedical SignalsSilesian University of TechnologyZabrzePoland
  2. 2.Department of Biochemistry, First Faculty of MedicineMedical University of WarsawWarsawPoland

Personalised recommendations