Advertisement

Tendrils of Crime: Visualizing the Diffusion of Stolen Bitcoins

  • Mansoor AhmedEmail author
  • Ilia Shumailov
  • Ross Anderson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11086)

Abstract

The first six months of 2018 have seen cryptocurrency thefts of $761 million, and the technology is also the latest and greatest tool for money laundering. This increase in crime has caused both researchers and law enforcement to look for ways to trace criminal proceeds. Although tracing algorithms have improved recently, they still yield an enormous amount of data of which very few datapoints are relevant or interesting to investigators, let alone ordinary bitcoin owners interested in provenance. In this work we describe efforts to visualize relevant data on a blockchain. To accomplish this we come up with a graphical model to represent the stolen coins and then implement this using a variety of visualization techniques.

Keywords

Bitcoin Cybercrime Cryptocrime Visualization 

References

  1. 1.
    Aghaseyedjavadi, A., Bloomer, B., Giudici, S.: Coin vizGoogle Scholar
  2. 2.
    Anderson, R., Shumailov, I., Ahmed, M.: Making bitcoin legal. In: Twenty-Sixth International Security Protocols Workshop (2018)Google Scholar
  3. 3.
    Anderson, R., Shumailov, I., Ahmed, M., Rietmann, A.: Bitcoin redux. In: 17th Annual Workshop on the Economics of Information Security (2018)Google Scholar
  4. 4.
    Battista, G.D., Donato, V.D., Patrignani, M., Pizzonia, M., Roselli, V., Tamassia, R.: Bitconeview: visualization of flows in the Bitcoin transaction graph. In: 2015 IEEE Symposium on Visualization for Cyber Security (VizSec), pp. 1–8 (2015)Google Scholar
  5. 5.
    McGinn, D., Birch, D., Akroyd, D., Molina-Solana, M., Guo, Y., Knottenbelt, W.J.: Visualizing dynamic bitcoin transaction patterns. Big Data 4(2), 109–119 (2016)CrossRefGoogle Scholar
  6. 6.
    Kinkeldey, C., Fekete, J.D., Isenberg, P.: BitConduite: visualizing and analyzing activity on the Bitcoin network. In: EuroVis 2017 - Eurographics Conference on Visualization, Posters Track (2017)Google Scholar
  7. 7.
    Lee, T.: A brief history of Bitcoin hacks and frauds. Ars Technica, 12 May 2017Google Scholar
  8. 8.
    Lu., W.: Bitcoin-tx-graph-visualizer. http://www.npmjs.com/package/bitcoin-tx-graphvisualizer
  9. 9.
    Meiklejohn, S., et al.: A fistful of Bitcoins: characterizing payments among men with no names. In: Proceedings of the 2013 Conference on Internet Measurement Conference, IMC 2013, pp. 127–140. ACM, New York (2013).  https://doi.org/10.1145/2504730.2504747
  10. 10.
    Molina-Solana, M., Birch, D., Guo, Y.K.: Improving data exploration in graphs with fuzzy logic and large-scale visualisation. Appl. Soft Comput. 53, 227–235 (2017)CrossRefGoogle Scholar
  11. 11.
    Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). http://bitcoin.org/bitcoin.pdf
  12. 12.
    Narayanan, A., Bonneau, J., Felten, E., Miller, A., Goldfeder, S.: Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction. Princeton University Press, Princeton (2016). https://books.google.co.uk/books?id=LchFDAAAQBAJ
  13. 13.
    Reid, F., Harrigan, M.: An analysis of anonymity in the Bitcoin system. In: 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third International Conference on Social Computing, pp. 1318–1326 (2011)Google Scholar
  14. 14.
    Reuters: Cryptocurrency exchange theft surges in first half of 2018: report. https://reut.rs/2KLI3ow
  15. 15.
    Spagnuolo, M., Maggi, F., Zanero, S.: BitIodine: extracting intelligence from the Bitcoin network. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 457–468. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45472-5_29CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer Science and TechnologyUniversity of CambridgeCambridgeUK

Personalised recommendations