Advertisement

Techniques and Processing Methods to Isolate Stem Cells and Stromal Vascular Fraction Cells

  • Severiano Dos-Anjos
  • José Miguel Catalán
Chapter

Abstract

The field of regenerative medicine is becoming a key component in the practice of medicine, especially the use of cells within the same surgical procedure. Particularly, the use of freshly isolated autologous cells at the point of care is of special interest due to their simplicity and fast clinical application. Many different strategies, methods, and techniques exist for isolating cells from several tissue sources for clinical use in humans. The cellular characteristics and number can vary enormously according to the sample used, procedure, or specific method.

This chapter covers different cell isolation techniques that can be developed in a short time intraoperatively, focusing on bone marrow and adipose tissue sources. A summary of the increasing available clinical information is also included.

Keywords

Stromal vascular fraction Bone marrow aspirate Cell isolation Regenerative medicine Adipose tissue Bone marrow 

References

  1. 1.
    Nelson TJ, Behfar A, Yamada S, Martinez-Fernandez A, Terzic A. Stem cell platforms for regenerative medicine. Clin Transl Sci. 2009;2(3):222–7.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Thomson JA. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;107(5):861–72.CrossRefGoogle Scholar
  4. 4.
    Hombach-Klonisch S, Panigrahi S, Rashedi I, Seifert A, Alberti E, Pocar P, et al. Adult stem cells and their trans-differentiation potential-perspectives and therapeutic applications. J Mol Med (Berl). 2008;86(12):1301–14.CrossRefGoogle Scholar
  5. 5.
    Murphy MB, Moncivais K, Caplan AI. Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp Mol Med. 2013;45:e54.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Perdisa F, Gostynska N, Roffi A, Filardo G, Marcacci M, Kon E. Adipose-derived mesenchymal stem cells for the treatment of articular cartilage: a systematic review on preclinical and clinical evidence. Stem Cells Int. 2015;2015Google Scholar
  7. 7.
    Rodbell M. Metabolism of isolated fat. Cell. 1964;239(1):375–80.Google Scholar
  8. 8.
    Zimmerlin L, Donnenberg VS, Pfeifer ME, Meyer EM, Péault B, Rubin JP, et al. Stromal vascular progenitors in adult human adipose tissue. Cytometry A. 2010;77(1):22–30.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211–28.PubMedCrossRefGoogle Scholar
  10. 10.
    Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International So. Cytotherapy. 2013;15(6):641–8.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Aronowitz JA, Lockhart RA, Hakakian CS. Mechanical versus enzymatic isolation of stromal vascular fraction cells from adipose tissue. Springerplus. 2015;4:713.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Oberbauer E, Steffenhagen C, Wurzer C, Gabriel C, Redl H, Wolbank S. Enzymatic and non-enzymatic isolation systems for adipose tissue-derived cells: current state of the art. Cell Regen (Lond). 2015:4:7.Google Scholar
  13. 13.
    Shah FS, Wu X, Dietrich M, Rood J, Gimble JM. A non-enzymatic method for isolating human adipose tissue-derived stromal stem cells. Cytotherapy. 2013;15(8):979–85.PubMedCrossRefGoogle Scholar
  14. 14.
    Markarian CF, Frey GZ, Silveira MD, Chem EM, Milani AR, Ely PB, et al. Isolation of adipose-derived stem cells: a comparison among different methods. Biotechnol Lett. 2014;36(4):693–702.PubMedCrossRefGoogle Scholar
  15. 15.
    Raposio E, Caruana G, Bonomini S, Libondi G. A novel and effective strategy for the isolation of adipose-derived stem cells: minimally manipulated adipose-derived stem cells for more rapid and safe stem cell therapy. Plast Reconstr Surg. 2014;133(6):1406–9.PubMedGoogle Scholar
  16. 16.
    Baptista LS, do Amaral RJFC, Carias RBV, Aniceto M, Claudio-da-Silva C, Borojevic R. An alternative method for the isolation of mesenchymal stromal cells derived from lipoaspirate samples. Cytotherapy. 2009;11(6):706–15.PubMedCrossRefGoogle Scholar
  17. 17.
    Bianchi F, Maioli M, Leonardi E, Olivi E, Pasquinelli G, Valente S, et al. A new nonenzymatic method and device to obtain a fat tissue derivative highly enriched in pericyte-like elements by mild mechanical forces from human lipoaspirates. Cell Transplant. 2013;22(11):2063–77.PubMedCrossRefGoogle Scholar
  18. 18.
    Tonnard P, Verpaele A, Peeters G, Hamdi M, Cornelissen M, Declercq H. Nanofat grafting: basic research and clinical applications. Plast Reconstr Surg. 2013;132(4):1017–26.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Dos-Anjos Vilaboa S, Navarro-Palou M, Llull R. Age influence on stromal vascular fraction cell yield obtained from human lipoaspirates. Cytotherapy. 2014;16(8):1092–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Fraser JK, Hicok KC, Shanahan R, Zhu M, Miller S, Arm DM. The celution(®) system: automated processing of adipose-derived regenerative cells in a functionally closed system. Adv Wound Care. 2014;3(1):38–45.CrossRefGoogle Scholar
  21. 21.
    Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, et al. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells. 2006;24(2):376–85.PubMedCrossRefGoogle Scholar
  22. 22.
    Aronowitz JA, Ellenhorn JDI. Adipose stromal vascular fraction isolation: a head-to-head comparison of four commercial cell separation systems. Plast Reconstr Surg. 2013;132(6):932e–9e.PubMedCrossRefGoogle Scholar
  23. 23.
    Rodriguez J, Pratta A, Abbassi N, Fabre H, Rodriguez F, Debard C, et al. Evaluation of three devices for the isolation of the stromal vascular fraction from adipose tissue and for ASC culture: a comparative study. Stem Cells Int. 2017;2017:9289213.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Galipeau J, Krampera M. The challenge of defining mesenchymal stromal cell potency assays and their potential use as release criteria. Cytotherapy. 2015:125–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Yoshimura K, Shigeura T, Matsumoto D, Sato T, Takaki Y, Aiba-Kojima E, et al. Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J Cell Physiol. 2006;208(1):64–76.PubMedCrossRefGoogle Scholar
  26. 26.
    Chaput B, Bertheuil N, Escubes M, Grolleau J-L, Garrido I, Laloze J, et al. Mechanically isolated stromal vascular fraction provides a valid and useful collagenase-free alternative technique: a comparative study. Plast Reconstr Surg. 2016;138(4):807–19.PubMedCrossRefGoogle Scholar
  27. 27.
    Dimitriou R, Tsiridis E, Giannoudis PV. Current concepts of molecular aspects of bone healing. Injury. 2005;36(12):1392–404.PubMedCrossRefGoogle Scholar
  28. 28.
    Travlos GS. Normal structure, function, and histology of the bone marrow. Toxicol Pathol. 2006;34(5):548–65.PubMedCrossRefGoogle Scholar
  29. 29.
    Jäger M, Hernigou P, Zilkens C, Herten M, Li X, Fischer J, et al. Cell therapy in bone healing disorders. Orthop Rev (Pavia). 2010;2(2):e20.CrossRefGoogle Scholar
  30. 30.
    Hernigou P, Beaujean F. Treatment of osteonecrosis with autologous bone marrow grafting. Clin Orthop Relat Res. 2002;405:14–23.CrossRefGoogle Scholar
  31. 31.
    Hermann PC, Huber SL, Herrler T, von Hesler C, Andrassy J, Kevy SV, et al. Concentration of bone marrow total nucleated cells by a point-of-care device provides a high yield and preserves their functional activity. Cell Transplant. 2008;16(10):1059–69.PubMedCrossRefGoogle Scholar
  32. 32.
    Mazzanti B, Urbani S, Dal Pozzo S, Bufano P, Ballerini L, Gelli A, et al. Fully automated, clinical-grade bone marrow processing: a single-centre experience. Blood Transfus. 2016:1–8.Google Scholar
  33. 33.
    Hernigou P, Poignard A, Zilber S, Rouard H. Cell therapy of hip osteonecrosis with autologous bone marrow grafting. Indian J Orthop. 2009;43(1):40–5.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Hernigou P, Poignard A, Beaujean F, Rouard H. Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am. 2005;87(7):1430–7.PubMedGoogle Scholar
  35. 35.
    Hendrich C, Franz E, Waertel G, Krebs R, Jäger M. Safety of autologous bone marrow aspiration concentrate transplantation: initial experiences in 101 patients. Orthop Rev (Pavia). 2009;1(2):e32.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Hernigou P, Homma Y, Flouzat Lachaniette CH, Poignard A, Allain J, Chevallier N, et al. Benefits of small volume and small syringe for bone marrow aspirations of mesenchymal stem cells. Int Orthop. 2013;37(11):2279–87.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Gigante A, Cecconi S, Calcagno S, Busilacchi A, Enea D. Arthroscopic knee cartilage repair with covered microfracture and bone marrow concentrate. Arthrosc Tech. 2012;1(2)PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Li C, Wu X, Tong J, Yang X, Zhao J, Zheng Q, et al. Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Res Ther. 2015;6(1):55.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Houdek MT, Wyles CC, Martin JR, Sierra RJ. Stem cell treatment for avascular necrosis of the femoral head: current perspectives. Stem Cells Cloning. 2014;7:65–70.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Hernigou P, Guissou I, Homma Y, Poignard A, Chevallier N, Rouard H, et al. Percutaneous injection of bone marrow mesenchymal stem cells for ankle non-unions decreases complications in patients with diabetes. Int Orthop. 2015;39(8):1639–43.PubMedCrossRefGoogle Scholar
  41. 41.
    Singh AK, Sinha A. Percutaneous autologous bone marrow injections for delayed or non-union of bones. J Orthop Surg (Hong Kong). 2013;21(2):267.CrossRefGoogle Scholar
  42. 42.
    Chahla J, Dean CS, Moatshe G, Pascual-Garrido C, Serra Cruz R, LaPrade RF. Concentrated bone marrow aspirate for the treatment of chondral injuries and osteoarthritis of the knee: a systematic review of outcomes. Orthop J Sport Med. 2016;4(1):2325967115625481.CrossRefGoogle Scholar
  43. 43.
    Centeno CJ, Al-Sayegh H, Bashir J, Goodyear S, Freeman MD. A dose response analysis of a specific bone marrow concentrate treatment protocol for knee osteoarthritis. BMC Musculoskelet Disord. 2015;16(1):258.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Sánchez M, Fiz N, Guadilla J, Padilla S, Anitua E, Sánchez P, et al. Intraosseous infiltration of platelet-rich plasma for severe knee osteoarthritis. Arthrosc Tech. 2014;3(6):e713–7.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Casteilla L, Planat-Benard V, Laharrague P, Cousin B. Adipose-derived stromal cells: their identity and uses in clinical trials, an update. World J Stem Cells. 2011;3(4):25–33.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Gimble JM, Bunnell BA, Guilak F. Human adipose-derived cells: an update on the transition to clinical translation. Regen Med. 2012;7(2):225–35.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Pak J. Regeneration of human bones in hip osteonecrosis and human cartilage in knee osteoarthritis with autologous adipose-tissue-derived stem cells: a case series. J Med Case Rep. 2011;5:296.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Koh YG, Choi YJ, Kwon SK, Kim YS, Yeo JE. Clinical results and second-look arthroscopic findings after treatment with adipose-derived stem cells for knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc. 2015;23(5):1308–16.PubMedCrossRefGoogle Scholar
  49. 49.
    Michalek J, Moster R, Lukac L, Proefrock K, Petrasovic M, Rybar J, et al. Autologous adipose tissue-derived stromal vascular fraction cells application in patients with osteoarthritis. Cell Transplant. 2015:1–36.Google Scholar
  50. 50.
    Fodor PB, Paulseth SG. Adipose derived stromal cell (ADSC) injections for pain management of osteoarthritis in the human knee joint. Aesthet Surg J. 2016;36(2):229–36.PubMedCrossRefGoogle Scholar
  51. 51.
    Garza JR, Maria DS, Palomera T, Dumanian GA, Dos-Anjos S. Use of autologous adipose-derived stromal vascular fraction to treat osteoarthritis of the knee: a feasibility and safety study. J Regen Med. 2015;4:1.Google Scholar
  52. 52.
    Usuelli FG, Grassi M, Maccario C, Vigano’ M, Lanfranchi L, Alfieri Montrasio U, et al. Intratendinous adipose-derived stromal vascular fraction (SVF) injection provides a safe, efficacious treatment for Achilles tendinopathy: results of a randomized controlled clinical trial at a 6-month follow-up. Knee surgery, sport traumatol arthrosc. Berlin, Heidelberg: Springer; 2017.Google Scholar
  53. 53.
    Saxer F, Scherberich A, Todorov A, Studer P, Miot S, Schreiner S, et al. Implantation of stromal vascular fraction progenitors at bone fracture sites: from a rat model to a first-in-man study. Stem Cells. 2016;34(12):2956–66.PubMedCrossRefGoogle Scholar
  54. 54.
    Prins H-J, Schulten EAJM, ten Bruggenkate CM, Klein-Nulend J, Helder MN. Bone regeneration using the freshly isolated autologous stromal vascular fraction of adipose tissue in combination with calcium phosphate ceramics. Stem Cells Transl Med. 2016;1:98–107.Google Scholar
  55. 55.
    Atalay S, Coruh A, Deniz K. Stromal vascular fraction improves deep partial thickness burn wound healing. Burns. 2014;40(7):1375–83.PubMedCrossRefGoogle Scholar
  56. 56.
    Carstens MH, Gómez A, Cortés R, Turner E, Pérez C, Ocon M, et al. Non-reconstructable peripheral vascular disease of the lower extremity in ten patients treated with adipose-derived stromal vascular fraction cells. Stem Cell Res. 2017;18:14–21.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Severiano Dos-Anjos
    • 1
  • José Miguel Catalán
    • 2
  1. 1.Área de Biología CelularUniversidad de LeónLeónSpain
  2. 2.Dr. Catalán Traumatología DeportivaPalma de MallorcaSpain

Personalised recommendations