Advertisement

Recent Trends in Microneedle Development & Applications in Medicine and Cosmetics (2013–2018)

  • Jaspreet Singh Kochhar
  • Justin J. Y. Tan
  • Yee Chin Kwang
  • Lifeng Kang
Chapter

Abstract

In the past 5 years, microneedles have greatly revolutionized the way drugs can be delivered. This impact can be felt most greatly in the areas of medicine and cosmetics. In this chapter, we discuss some of the more prominent and widely researched drugs in therapeutics, primarily protein drugs, vaccines and small molecule drugs, as well as developments in microneedle technology in the delivery of new cosmetic agents, applications and formulations.

Keywords

Development Trend Application Protein drugs Vaccine Small molecule drug Cosmetics Therapeutics Anti-wrinkle Skin depigmentation Acne scar removal Dermaroller 

References

  1. 1.
    Jiskoot W et al (2012) Protein instability and Immunogenicity: roadblocks to clinical application of injectable protein delivery systems for sustained release. J Pharm Sci 101:946–954PubMedCrossRefGoogle Scholar
  2. 2.
    Gill HS et al (2008) Effect of microneedle design on pain in human volunteers. Clin J Pain 24:585–594PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Giudice E et al (2006) Needle-free vaccine delivery. Adv Drug Deliv Rev 58:68–89PubMedCrossRefGoogle Scholar
  4. 4.
    Levine MM (2003) Can needle-free administration of vaccines become the norm in global immunization? Nat Med 9:99–103PubMedCrossRefGoogle Scholar
  5. 5.
    Herwadkar A et al (2012) Peptide and protein transdermal drug delivery. Drug Discov Today Technol 9:e147–e154CrossRefGoogle Scholar
  6. 6.
    Sachdeva V et al (2011) Microneedles and their applications. Recent Pat Drug Deliv Formul 5:95–132PubMedCrossRefGoogle Scholar
  7. 7.
    Banga AK (2009) Microporation applications for enhancing drug delivery. Expert Opin Drug Deliv 6:343–354PubMedCrossRefGoogle Scholar
  8. 8.
    Owens DR (2002) New horizons—alternative routes for insulin therapy. Nat Rev Drug Discov 1:529–540PubMedCrossRefGoogle Scholar
  9. 9.
    Stumvoll M et al (2005) Type 2 diabetes: principles of pathogenesis and therapy. Lancet 365:1333–1346PubMedCrossRefGoogle Scholar
  10. 10.
    Zhang Y et al (2018) Microneedles fabricated from alginate and maltose for transdermal delivery of insulin on diabetic rats. Mater Sci Eng C 85:18–26CrossRefGoogle Scholar
  11. 11.
    Liu S et al (2012) The development and characteristics of novel microneedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin. J Control Release 161:933–941PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Ito Y et al (2006) Feasibility of microneedles for percutaneous absorption of insulin. Eur J Pharm Sci 29:82–88CrossRefGoogle Scholar
  13. 13.
    Martanto W et al (2004) Transdermal delivery of insulin using microneedles in vivo. Pharm Res 21:947–952PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Zhou CP et al (2010) Transdermal delivery of insulin using microneedle rollers in vivo. Int J Pharm 392:127–133CrossRefGoogle Scholar
  15. 15.
    Davis SP et al (2005) Hollow metal microneedles for insulin delivery to diabetic rats. IEEE Trans Biomed Eng 52:909–915PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    McAllister DV et al (2003) Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc Natl Acad Sci 100:13755–13760PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Gardeniers HJGE et al (2003) Silicon micromachined hollow microneedles for transdermal liquid transport. J Microelectromech Syst 12:855–862CrossRefGoogle Scholar
  18. 18.
    Roxhed N et al (2008) Painless drug delivery through microneedle-based transdermal patches featuring active infusion. IEEE Trans Biomed Eng 55:1063–1071PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Nordquist L et al (2007) Novel microneedle patches for active insulin delivery are efficient in maintaining glycaemic control: an initial comparison with subcutaneous administration. Pharm Res 24:1381–1388PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Lee K et al (2010) Drawing lithography: three-dimensional fabrication of an ultrahigh-aspect-ratio microneedle. Adv Mater 22:483–486PubMedCrossRefGoogle Scholar
  21. 21.
    Gupta J et al (2009) Minimally invasive insulin delivery in subjects with type 1 diabetes using hollow microneedles. Diabetes Technol Ther 11:329–337PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Gupta J et al (2011) Rapid pharmacokinetics of intradermal insulin administered using microneedles in type 1 diabetes subjects. Diabetes Technol Ther 13:451–456PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Pettis RJ et al (2011) Intradermal microneedle delivery of insulin lispro achieves faster insulin absorption and insulin action than subcutaneous injection. Diabetes Technol Ther 13:435–442PubMedCrossRefGoogle Scholar
  24. 24.
    Pettis RJ et al (2011) Microneedle-based intradermal versus subcutaneous administration of regular human insulin or insulin lispro: pharmacokinetics and postprandial glycemic excursions in patients with type 1 diabetes. Diabetes Technol Ther 13:443–450PubMedCrossRefGoogle Scholar
  25. 25.
    Harvey AJ et al (2011) Microneedle-based intradermal delivery enables rapid lymphatic uptake and distribution of protein drugs. Pharm Res 28:107–116CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ito Y et al (2007) Sustained-release self-dissolving micropiles for percutaneous absorption of insulin in mice. J Drug Target 15:323–326PubMedCrossRefGoogle Scholar
  27. 27.
    Ito Y et al (2008) Antihyperglycemic effect of insulin from self-dissolving micropiles in dogs. Chem Pharm Bull 56:243–246PubMedCrossRefGoogle Scholar
  28. 28.
    Fukushima K et al (2010) Pharmacokinetic and pharmacodynamic evaluation of insulin dissolving microneedles in dogs. Diabetes Technol Ther 12:465–474PubMedCrossRefGoogle Scholar
  29. 29.
    Ito Y et al (2010) Self-dissolving micropile array tips for percutaneous administration of insulin. J Mater Sci Mater Med 21:835–841PubMedCrossRefGoogle Scholar
  30. 30.
    Prahm KP et al (2017) Human growth hormone stabilizes walking and improves strength in a patient with dominantly inherited calpainopathy. Neuromuscul Disord 27:358–362PubMedCrossRefGoogle Scholar
  31. 31.
    Rothenbuhler A et al (2015) A pilot study of growth hormone administration in boys with predicted adult short stature and near-ending growth. Growth Hormon IGF Res 25:96–102CrossRefGoogle Scholar
  32. 32.
    Lee JW et al (2011) Dissolving microneedle patch for transdermal delivery of human growth hormone. Small 7:531–539PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Smith SL et al (1993) Compliance with growth hormone treatment—are they getting it? Arch Dis Child 68:91–93PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Ameri M et al (2014) Human growth hormone delivery with a microneedle transdermal system: preclinical formulation, stability, delivery and pk of therapeutically relevant doses. Pharmaceutics 6:220–234PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Schally AV et al (1972) Luteinizing hormone-releasing hormone (LH-RH) activity of some synthetic polypeptides. I. fragments shorter than decapeptide. Biochem Biophys Res Commun 48:366–375PubMedCrossRefGoogle Scholar
  36. 36.
    Chen MY et al (2017) Transdermal delivery of luteinizing hormone-releasing hormone with chitosan microneedles: a promising tool for androgen deprivation therapy. Anticancer Res 37:6791–6798PubMedCrossRefGoogle Scholar
  37. 37.
    Dangle P et al (2007) Noninfective cutaneous granuloma with leuprorelin acetate—reality or myth. Urology 69:779.e775–779.e776CrossRefGoogle Scholar
  38. 38.
    Tashiro K et al (2014) Giant subcutaneous hematoma with hemorrhagic shock induced by goserelin acetate injection for prostate cancer : report of a case. Hinyokika Kiyo Acta Urologica Japonica 60:455–458PubMedGoogle Scholar
  39. 39.
    Ling M-H et al (2013) Dissolving polymer microneedle patches for rapid and efficient transdermal delivery of insulin to diabetic rats. Acta Biomater 9:8952–8961PubMedCrossRefGoogle Scholar
  40. 40.
    Chen M-C et al (2015) Poly-γ-glutamic acid microneedles with a supporting structure design as a potential tool for transdermal delivery of insulin. Acta Biomater 24:106–116PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Yu W et al (2017) Fabrication of biodegradable composite microneedles based on calcium sulfate and gelatin for transdermal delivery of insulin. Mater Sci Eng C 71:725–734CrossRefGoogle Scholar
  42. 42.
    Yu W et al (2017) Polymer microneedles fabricated from alginate and hyaluronate for transdermal delivery of insulin. Mater Sci Eng C 80:187–196CrossRefGoogle Scholar
  43. 43.
    Yu W et al (2017) Transdermal delivery of insulin with bioceramic composite microneedles fabricated by gelatin and hydroxyapatite. Mater Sci Eng C 73:425–428CrossRefGoogle Scholar
  44. 44.
    Seong K-Y et al (2017) A self-adherent, bullet-shaped microneedle patch for controlled transdermal delivery of insulin. J Control Release 265:48–56PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Payette PJ et al (2001) History of vaccines and positioning of current trends. Curr Drug Targets Infect Disord 1:241–247PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Kim YC et al (2010) Enhanced memory responses to seasonal H1N1 influenza vaccination of the skin with the use of vaccine-coated microneedles. J Infect Dis 201:190–198PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Chen X et al (2010) Improved DNA vaccination by skin-targeted delivery using dry-coated densely-packed microprojection arrays. J Control Release 148:327–333PubMedCrossRefGoogle Scholar
  48. 48.
    Carey JB et al (2011) Microneedle array design determines the induction of protective memory CD8+ T cell responses induced by a recombinant live Malaria vaccine in mice. PLoS One 6:e22442PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    del Pilar Martin M et al (2012) Local response to microneedle-based influenza immunization in the skin. MBio 3:e00012–e00012PubMedPubMedCentralGoogle Scholar
  50. 50.
    Selkoe DJ (1991) The molecular pathology of Alzheimer’s disease. Neuron 6:487–498PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Hardy J et al (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Schenk D et al (1999) Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400:173–177PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Bayer AJ et al (2005) Evaluation of the safety and immunogenicity of synthetic A 42 (AN1792) in patients with AD. Neurology 64:94–101PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Orgogozo JM et al (2003) Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology 61:46–54PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Nicoll JAR et al (2003) Neuropathology of human Alzheimer disease after immunization with amyloid-β peptide: a case report. Nat Med 9:448–452PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Ferrer I et al (2004) Neuropathology and pathogenesis of encephalitis following amyloid-beta immunization in Alzheimer’s disease. Brain Pathol (Zurich, Switzerland) 14:11–20CrossRefGoogle Scholar
  57. 57.
    Hock C et al (2002) Generation of antibodies specific for β-amyloid by vaccination of patients with Alzheimer disease. Nat Med 8:1270–1275PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Hock C et al (2003) Antibodies against beta-amyloid slow cognitive decline in Alzheimer’s disease. Neuron 38:547–554PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Larregina AT et al (2001) Dermal-resident CD14+ cells differentiate into Langerhans cells. Nat Immunol 2:1151–1158PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Niizeki H et al (1997) Hapten-specific tolerance induced by acute, low-dose ultraviolet B radiation of skin is mediated via interleukin-10. J Invest Dermatol 109:25–30PubMedCrossRefGoogle Scholar
  61. 61.
    Tada Y et al (2003) Langerhans cells do not produce interferon-γ. J Invest Dermatol 120:891–892PubMedCrossRefGoogle Scholar
  62. 62.
    Fujita H et al (2005) Differential production of Th1- and Th2-type chemokines by mouse langerhans cells and splenic dendritic cells. J Invest Dermatol 124:343–350PubMedCrossRefGoogle Scholar
  63. 63.
    Ishii Y et al (2008) A transcutaneous vaccination system using a hydrogel patch for viral and bacterial infection. J Control Release 131:113–120PubMedCrossRefGoogle Scholar
  64. 64.
    Matsuo K et al (2014) Vaccine efficacy of transcutaneous immunization with amyloid β using a dissolving microneedle array in a mouse model of Alzheimer’s disease. J Neuroimmunol 266:1–11PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Tate JE et al (2012) 2008 estimate of worldwide rotavirus-associated mortality in children younger than 5 years before the introduction of universal rotavirus vaccination programmes: a systematic review and meta-analysis. Lancet Infect Dis 12:136–141PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Ruiz-Palacios GM et al (2006) Safety and efficacy of an attenuated vaccine against severe rotavirus gastroenteritis. N Engl J Med 354:11–22PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Vesikari T et al (2006) Safety and efficacy of a pentavalent human–bovine (WC3) reassortant rotavirus vaccine. N Engl J Med 354:23–33PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Madhi SA et al (2010) Effect of human rotavirus vaccine on severe diarrhea in African infants. N Engl J Med 362:289–298PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Zaman K et al (2010) Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in Asia: a randomised, double-blind, placebo-controlled trial. Lancet 376:615–623PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Narang A et al (2009) Immunogenicity, reactogenicity and safety of human rotavirus vaccine (RIX4414) in Indian infants. Hum Vaccin 5:414–419PubMedCrossRefGoogle Scholar
  71. 71.
    Armah GE et al (2010) Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in sub-Saharan Africa: a randomised, double-blind, placebo-controlled trial. Lancet (London, England) 376:606–614CrossRefGoogle Scholar
  72. 72.
    Patel M et al (2009) Association between pentavalent rotavirus vaccine and severe rotavirus diarrhea among children in Nicaragua. JAMA 301:2243–2251PubMedCrossRefGoogle Scholar
  73. 73.
    Patel MM et al (2011) Intussusception risk and health benefits of rotavirus vaccination in Mexico and Brazil. N Engl J Med 364:2283–2292PubMedCrossRefGoogle Scholar
  74. 74.
    Buttery JP et al (2011) Intussusception following rotavirus vaccine administration: post-marketing surveillance in the National Immunization Program in Australia. Vaccine 29:3061–3066PubMedCrossRefGoogle Scholar
  75. 75.
    Moon S-S et al (2010) Inhibitory effect of breast milk on infectivity of live oral rotavirus vaccines. Pediatr Infect Dis J 29:919–923PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Steinhoff M et al (2001) Keratinocytes in epidermal immune responses. Curr Opin Allergy Clin Immunol 1:469–476PubMedGoogle Scholar
  77. 77.
    Moon S et al (2013) Dose sparing and enhanced immunogenicity of inactivated rotavirus vaccine administered by skin vaccination using a microneedle patch. Vaccine 31:3396–3402PubMedCrossRefGoogle Scholar
  78. 78.
    Akazawa M et al (2003) Economic costs of influenza-related work absenteeism. Value Health 6:107–115PubMedCrossRefGoogle Scholar
  79. 79.
    Meltzer MI et al (1999) The economic impact of pandemic influenza in the United States: priorities for intervention. Emerg Infect Dis 5:659–671PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Kommareddy S et al (2013) Influenza subunit vaccine coated microneedle patches elicit comparable immune responses to intramuscular injection in guinea pigs. Vaccine 31:3435–3441PubMedCrossRefGoogle Scholar
  81. 81.
    Hale BG et al (2010) Innate immune evasion strategies of influenza viruses. Future Microbiol 5:23–41PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Amorij J-P et al (2010) Needle-free influenza vaccination. Lancet Infect Dis 10:699–711PubMedCrossRefGoogle Scholar
  83. 83.
    Dormitzer P et al (2012) New technologies for influenza vaccines. Hum Vacc Immunother 8:45–58CrossRefGoogle Scholar
  84. 84.
    O’Hagan DT et al (2011) MF59 adjuvant: the best insurance against influenza strain diversity. Expert Rev Vaccines 10:447–462PubMedCrossRefGoogle Scholar
  85. 85.
    Vogel FR et al (2009) Emulsion-based adjuvants for influenza vaccines. Expert Rev Vaccines 8:483–492PubMedCrossRefGoogle Scholar
  86. 86.
    Belshe R et al (2004) Safety, immunogenicity and efficacy of intranasal, live attenuated influenza vaccine. Expert Rev Vaccines 3:643–654PubMedCrossRefGoogle Scholar
  87. 87.
    Young F et al (2011) A systematic review of intradermal influenza vaccines. Vaccine 29:8788–8801PubMedCrossRefGoogle Scholar
  88. 88.
    Sullivan SP et al (2010) Dissolving polymer microneedle patches for influenza vaccination. Nat Med 16:915–920PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Zhu Q et al (2009) Immunization by vaccine-coated microneedle arrays protects against lethal influenza virus challenge. Proc Natl Acad Sci 106:7968–7973PubMedCrossRefGoogle Scholar
  90. 90.
    Gill HS et al (2007) Coated microneedles for transdermal delivery. J Control Release 117:227–237PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Raphael AP et al (2010) Targeted, needle-free vaccinations in skin using multilayered, densely-packed dissolving microprojection arrays. Small 6:1785–1793PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Kommareddy S et al (2012) Dissolvable microneedle patches for the delivery of cell-culture-derived influenza vaccine antigens. J Pharm Sci 101:1021–1027PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Kim Y-C et al (2011) Stability kinetics of influenza vaccine coated onto microneedles during drying and storage. Pharm Res 28:135–144PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Birchall JC et al (2011) Microneedles in clinical practice–an exploratory study into the opinions of healthcare professionals and the public. Pharm Res 28:95–106PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Weldon WC et al (2011) Microneedle vaccination with stabilized recombinant influenza virus hemagglutinin induces improved protective immunity. Clin Vaccine Immunol 18:647–654PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Koutsonanos DG et al (2012) Delivery of subunit influenza vaccine to skin with microneedles improves immunogenicity and long-lived protection. Sci Rep 2:357PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Rouphael NG et al (2017) The safety, immunogenicity, and acceptability of inactivated influenza vaccine delivered by microneedle patch (TIV-MNP 2015): a randomised, partly blinded, placebo-controlled, phase 1 trial. Lancet 390:649–658PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Gay NJ (2004) The theory of measles elimination: implications for the design of elimination strategies. J Infect Dis 189:S27–S35PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Kim YC et al (2012) Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev 64:1547–1568PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Klamm H et al (1991) Thermal inactivation of different measles virus strains. Acta Virol 35:200–202PubMedGoogle Scholar
  101. 101.
    Edens C et al (2015) Inactivated polio vaccination using a microneedle patch is immunogenic in the rhesus macaque. Vaccine 33:4683–4690PubMedCrossRefGoogle Scholar
  102. 102.
    Cochi SL et al (2012) The final phase of polio eradication: new vaccines and complex choices. J Infect Dis 205:169–171PubMedCrossRefGoogle Scholar
  103. 103.
    Cáceres VM et al (2001) Sabin monovalent oral polio vaccines: review of past experiences and their potential use after polio eradication. Clin Infect Dis 33:531–541PubMedCrossRefGoogle Scholar
  104. 104.
    Duintjer Tebbens RJ et al (2013) Characterizing poliovirus transmission and evolution: insights from modeling experiences with wild and vaccine-related polioviruses: poliovirus transmission and evolution model. Risk Anal 33:703–749PubMedCrossRefGoogle Scholar
  105. 105.
    Duintjer Tebbens RJ et al (2013) Oral poliovirus vaccine evolution and insights relevant to modeling the risks of circulating vaccine-derived polioviruses (cVDPVs): oral poliovirus vaccine evolution and modeling. Risk Anal 33:680–702PubMedCrossRefGoogle Scholar
  106. 106.
    Heinsbroek E et al (2010) The global introduction of inactivated polio vaccine can circumvent the oral polio vaccine paradox. Vaccine 28:3778–3783PubMedCrossRefGoogle Scholar
  107. 107.
    Davis R et al (2013) Inactivated polio vaccine: its proposed role in the final stages of polio eradication. Pan Afr Med J 14:102PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Hird TR et al (2012) Systematic review of mucosal immunity induced by oral and inactivated poliovirus vaccines against virus shedding following oral poliovirus challenge. PLoS Pathog 8:e1002599PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Dhamodharan A et al (2012) Determining the optimal vaccine vial size in developing countries: a Monte Carlo simulation approach. Health Care Manag Sci 15:188–196PubMedCrossRefGoogle Scholar
  110. 110.
    Gyawali S et al (2013) Strategies and challenges for safe injection practice in developing countries. J Pharmacol Pharmacother 4:8PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Arya JM et al (2016) Rabies vaccination in dogs using a dissolving microneedle patch. J Control Release 239:19–26PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Rabies vaccines (2010) WHO position paper—recommendations. Vaccine 28:7140–7142CrossRefGoogle Scholar
  113. 113.
    Nigg AJ et al (2009) Overview, prevention, and treatment of Rabies. Pharmacotherapy 29:1182–1195PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Briggs DJ et al (2000) Antibody response of patients after postexposure rabies vaccination with small intradermal doses of purified chick embryo cell vaccine or purified Vero cell rabies vaccine. Bull World Health Organ 78:693–698PubMedPubMedCentralGoogle Scholar
  115. 115.
    Khawplod P et al (2006) Revision of the Thai Red Cross intradermal rabies post-exposure regimen by eliminating the 90-day booster injection. Vaccine 24:3084–3086PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Quiambao BP et al (2005) Reducing the cost of post-exposure rabies prophylaxis: efficacy of 0.1ml PCEC rabies vaccine administered intradermally using the thai red cross post-exposure regimen in patients severely exposed to laboratory-confirmed rabid animals. Vaccine 23:1709–1714PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Zehrung D et al (2013) Intradermal delivery for vaccine dose sparing: overview of current issues. Vaccine 31:3392–3395PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Nestle FO et al (2009) Skin immune sentinels in health and disease. Nat Rev Immunol 9:679–691PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Lambert PH et al (2008) Intradermal vaccine delivery: will new delivery systems transform vaccine administration? Vaccine 26:3197–3208PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Hickling J et al (2011) Intradermal delivery of vaccines: potential benefits and current challenges. Bull World Health Organ 89:221–226PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Flynn PM et al (1994) Influence of needle gauge in mantoux skin testing. Chest 106:1463–1465PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Tarnow K et al (2004) Intradermal injections: traditional bevel up versus bevel down. Appl Nurs Res 17:275–282PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Edens C et al (2013) Measles vaccination using a microneedle patch. Vaccine 31:3403–3409PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Teunissen MBM et al (2015) Cutaneous vaccination – protective immunization is just a skin-deep step away. Vaccine 33:4659–4662PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Wendorf JR et al (2011) Transdermal delivery of macromolecules using solid-state biodegradable microstructures. Pharm Res 28:22–30PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Raphael AP et al (2016) Formulations for microprojection/microneedle vaccine delivery: structure, strength and release profiles. J Control Release 225:40–52PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Matsuo K et al (2012) Transcutaneous immunization using a dissolving microneedle array protects against tetanus, diphtheria, malaria, and influenza. J Control Release 160:495–501PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Bachy V et al (2013) Langerin negative dendritic cells promote potent CD8+ T-cell priming by skin delivery of live adenovirus vaccine microneedle arrays. Proc Natl Acad Sci 110:3041–3046PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Pattani A et al (2012) Microneedle mediated intradermal delivery of adjuvanted recombinant HIV-1 CN54gp140 effectively primes mucosal boost inoculations. J Control Release 162:529–537PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Gunther G (2014) Multidrug-resistant and extensively drug-resistant tuberculosis: a review of current concepts and future challenges. Clin Med 14:279–285CrossRefGoogle Scholar
  131. 131.
    Cohen T et al (2006) Beneficial and perverse effects of isoniazid preventive therapy for latent tuberculosis infection in HIV-tuberculosis coinfected populations. Proc Natl Acad Sci 103:7042–7047PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    McShane H (2014) Editorial commentary: understanding BCG is the key to improving it. Clin Infect Dis 58:481–482PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Hawkridge A et al (2009) Eficácia da BCG percutânea versus intradérmica na prevenção de tuberculose em crianças na África do Sul: Estudo randomizado. Rev Port Pneumol 15:747–749PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Pasteur MC et al (2001) The effects of inadvertent intramuscular injection of BCG vaccine. Scand J Infect Dis 33:473–474PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Mitragotri S (2005) Immunization without needles. Nat Rev Immunol 5:905–916PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Jeena PM et al (2001) Safety of the intradermal copenhagen 1331 BCG vaccine in neonates in Durban. South Africa Bull World Health Org 79:337–343PubMedPubMedCentralGoogle Scholar
  137. 137.
    Hiraishi Y et al (2011) Bacillus Calmette-Guérin vaccination using a microneedle patch. Vaccine 29:2626–2636PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Chen F et al (2017) BCG vaccine powder-laden and dissolvable microneedle arrays for lesion-free vaccination. J Control Release 255:36–44PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Choi H-J et al (2013) Stability of whole inactivated influenza virus vaccine during coating onto metal microneedles. J Control Release 166:159–171PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Kim Y-C et al (2013) Cross-protection by co-immunization with influenza hemagglutinin DNA and inactivated virus vaccine using coated microneedles. J Control Release 172:579–588PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Vassilieva EV et al (2015) Improved immunogenicity of individual influenza vaccine components delivered with a novel dissolving microneedle patch stable at room temperature. Drug Deliv Transl Res 5:360–371PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Edens C et al (2015) A microneedle patch containing measles vaccine is immunogenic in non-human primates. Vaccine 33:4712–4718PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Henry S et al (1998) Microfabricated microneedles: a novel approach to transdermal drug delivery. J Pharm Sci 87:922–925PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Li W-Z et al (2010) Super-short solid silicon microneedles for transdermal drug delivery applications. Int J Pharm 389:122–129PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Qiu Y et al (2008) Enhancement of skin permeation of docetaxel: a novel approach combining microneedle and elastic liposomes. J Control Release 129:144–150PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Banks SL et al (2008) Flux across of microneedle-treated skin is increased by increasing charge of naltrexone and naltrexol in vitro. Pharm Res 25:1677–1685PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Banks SL et al (2010) Transdermal delivery of naltrexol and skin permeability lifetime after microneedle treatment in hairless guinea pigs. J Pharm Sci 99:3072–3080PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Wermeling DP et al (2008) Microneedles permit transdermal delivery of a skin-impermeant medication to humans. Proc Natl Acad Sci U S A 105:2058–2063PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Yerramreddy TR et al (2010) Novel 3-O-pegylated carboxylate and 3-O-pegylated carbamate prodrugs of naltrexone for microneedle-enhanced transdermal delivery. Bioorg Med Chem Lett 20:3280–3283PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Arvin AM (2007) Human herpesviruses: biology, therapy, and immunoprophylaxis. Cambridge University Press, CambridgeGoogle Scholar
  151. 151.
    Rahimi H et al (2012) Effectiveness of antiviral agents for the prevention of recurrent herpes labialis: a systematic review and meta-analysis. Oral Surg Oral Med Oral Pathol Oral Radiol 113:618–627PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Peira E et al (2007) Elastic positively-charged liposomes for topical administration of acyclovir. J Drug Delivery Sci Technol 17:321–324CrossRefGoogle Scholar
  153. 153.
    Goldberg LH et al (1986) Oral acyclovir for episodic treatment of recurrent genital herpes. Efficacy and safety. J Am Acad Dermatol 15:256–264PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Meng J-b (2011) Oral acyclovir induced acute renal failure. World J Emerg Med 2:310PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Yildiz C et al (2013) Acute kidney injury due to acyclovir. CEN Case Rep 2:38–40PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Hassan H et al (2016) Antiviral nanodelivery systems: current trends in acyclovir administration. J Nanomater 2016:1–8CrossRefGoogle Scholar
  157. 157.
    Friedrichsen GM et al (2002) Synthesis of analogs of L-valacyclovir and determination of their substrate activity for the oligopeptide transporter in Caco-2 cells. Eur J Pharm Sci 16:1–13PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Spruance SL et al (1982) Topical 5 percent acyclovir in polyethylene glycol for herpes simplex labialis. Antiviral effect without clinical benefit. Am J Med 73:315–319PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Pamornpathomkul B et al (2018) Dissolving polymeric microneedle arrays for enhanced site-specific acyclovir delivery. Eur J Pharm Sci 121:200–209PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Steiner TJ et al (2015) Headache disorders are third cause of disability worldwide. J Headache Pain 16:58PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Buse DC et al (2009) Assessing and managing all aspects of migraine: migraine attacks, migraine-related functional impairment, common comorbidities, and quality of life. Mayo Clin Proc 84:422–435PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Burton WN et al (2009) The impact of migraine and the effect of migraine treatment on workplace productivity in the United States and suggestions for future research. Mayo Clin Proc 84:436–445PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Villalón CM et al (2002) An introduction to migraine: from ancient treatment to functional pharmacology and antimigraine therapy. Proc West Pharmacol Soc 45:199–210PubMedPubMedCentralGoogle Scholar
  164. 164.
    Jhee SS et al (2001) Pharmacokinetics and Pharmacodynamics of the Triptan antimigraine agents: a comparative review. Clin Pharmacokinet 40:189–205PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Moskowitz MA et al (1993) Sumatriptan: a receptor-targeted treatment for migraine. Annu Rev Med 44:145–154PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Ronnander P et al (2018) Dissolving polyvinylpyrrolidone-based microneedle systems for in-vitro delivery of sumatriptan succinate. Eur J Pharm Sci 114:84–92PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Barbero AM et al (2009) Pig and guinea pig skin as surrogates for human in vitro penetration studies: a quantitative review. Toxicol in Vitro 23:1–13PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Qvist MH et al (2000) Evaluation of Göttingen minipig skin for transdermal in vitro permeation studies. Eur J Pharm Sci 11:59–68PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Viana M et al (2013) Triptan nonresponders: do they exist and who are they? Cephalalgia 33:891–896PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Morren JA et al (2010) Where is dihydroergotamine mesylate in the changing landscape of migraine therapy? Expert Opin Pharmacother 11:3085–3093PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Bigal ME et al (2003) Ergotamine and dihydroergotamine: a review. Curr Pain Headache Rep 7:55–62PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Saper JR et al (2006) DHE in the pharmacotherapy of migraine: potential for a larger role. Headache 46:S212–S220PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Shrewsbury SB et al (2008) Safety and pharmacokinetics of dihydroergotamine mesylate administered via a novel (Tempo™) inhaler. Headache 48:355–367PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Lee K et al (2011) Dissolving microneedles for transdermal drug administration prepared by stepwise controlled drawing of maltose. Biomaterials 32:3134–3140PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Sullivan SP et al (2008) Minimally invasive protein delivery with rapidly dissolving polymer microneedles. Adv Mater 20:933–938PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    You X et al (2011) Rapidly dissolving fibroin microneedles for transdermal drug delivery. Mater Sci Eng C 31:1632–1636CrossRefGoogle Scholar
  177. 177.
    Ito Y et al (2013) Dissolving microneedles to obtain rapid local anesthetic effect of lidocaine at skin tissue. J Drug Target 21:770–775PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Tas C et al (2017) Dihydroergotamine mesylate-loaded dissolving microneedle patch made of polyvinylpyrrolidone for management of acute migraine therapy. J Control Release 268:159–165PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Lin J et al (2014) Current evidence and applications of photodynamic therapy in dermatology. Clin Cosmet Investig Dermatol 7:145PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Lee PK et al (2013) Current methods for photodynamic therapy in the US: comparison of MAL/PDT and ALA/PDT. J Drugs Dermatol 12:925–930PubMedPubMedCentralGoogle Scholar
  181. 181.
    Rimington C (2009) Porphyrin and haem biosynthesis and its control. Acta Med Scand 179:11–24CrossRefGoogle Scholar
  182. 182.
    Darlenski R et al (2012) Photodynamic therapy in dermatology: past, present, and future. J Biomed Opt 18:061208CrossRefGoogle Scholar
  183. 183.
    Peng Q et al (1997) 5-Aminolevulinic acid-based photodynamic therapy. Clinical research and future challenges. Cancer 79:2282–2308PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Webber J et al (1997) Side effects and photosensitization of human tissues after aminolevulinic acid. J Surg Res 68:31–37PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Ahmadi S et al (2004) Evaluation of the penetration of 5-aminolevulinic acid through basal cell carcinoma: a pilot study. Exp Dermatol 13:445–451PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Godal A et al (2006) New derivatives of 5-aminolevulinic acid for photodynamic therapy: chemical synthesis and porphyrin production in in vitro and in vivo biological systems. J Environ Pathol Toxicol Oncol 25:109–126PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Kim et al (2012) Poly(L-histidine)-tagged 5-aminolevulinic acid prodrugs: new photosensitizing precursors of protoporphyrin IX for photodynamic colon cancer therapy. Int J Nanomedicine 7:2497PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Morrow DIJ et al (2010) Influence of penetration enhancers on topical delivery of 5-aminolevulinic acid from bioadhesive patches. J Pharm Pharmacol 62:685–695PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Grüning N et al (2008) Physicochemical characterisation of a novel thermogelling formulation for percutaneous penetration of 5-Aminolevulinic acid. J Pharm Sci 97:2311–2323PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    Shi L et al (2013) In vitro evaluation of 5-aminolevulinic acid (ALA) loaded PLGA nanoparticles. Int J Nanomedicine 8:2669PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Fang Y-P et al (2008) Comparison of 5-aminolevulinic acid-encapsulated liposome versus ethosome for skin delivery for photodynamic therapy. Int J Pharm 356:144–152PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Fang J-Y et al (2011) Oil components modulate the skin delivery of 5-aminolevulinic acid and its ester prodrug from oil-in-water and water-in-oil nanoemulsions. Int J Nanomedicine 6:693PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Donnelly RF et al (2010) Microneedle-mediated intradermal nanoparticle delivery: potential for enhanced local administration of hydrophobic pre-formed photosensitisers. Photodiagn Photodyn Ther 7:222–231CrossRefGoogle Scholar
  194. 194.
    Mikolajewska P et al (2010) Microneedle pre-treatment of human skin improves 5-Aminolevulininc Acid (ALA)- and 5-Aminolevulinic Acid Methyl Ester (MAL)-Induced PpIX Production for topical photodynamic therapy without increase in pain or erythema. Pharm Res 27:2213–2220PubMedCrossRefPubMedCentralGoogle Scholar
  195. 195.
    Rodrigues PGS et al (2015) Assessment of ALA-induced PpIX production in porcine skin pretreated with microneedles. J Biophotonics 8:723–729PubMedCrossRefPubMedCentralGoogle Scholar
  196. 196.
    Gupta J et al (2011) Kinetics of skin resealing after insertion of microneedles in human subjects. J Control Release 154:148–155PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Ghosh P et al (2014) Fluvastatin as a micropore lifetime enhancer for sustained delivery across microneedle-treated skin. J Pharm Sci 103:652–660PubMedCrossRefGoogle Scholar
  198. 198.
    Banks SL et al (2011) Diclofenac enables prolonged delivery of naltrexone through microneedle-treated skin. Pharm Res 28:1211–1219PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Zhang Y et al (2012) Development of lidocaine-coated microneedle product for rapid, safe, and prolonged local analgesic action. Pharm Res 29:170–177CrossRefGoogle Scholar
  200. 200.
    Jiang J et al (2007) Coated microneedles for drug delivery to the eye. Invest Ophthalmol Vis Sci 48:4038–4043CrossRefPubMedPubMedCentralGoogle Scholar
  201. 201.
    Andrianov AK et al (2009) Poly[di(carboxylatophenoxy)phosphazene] is a potent adjuvant for intradermal immunization. Proc Natl Acad Sci 106:18936–18941PubMedCrossRefPubMedCentralGoogle Scholar
  202. 202.
    Kim Y-C et al (2010) Formulation and coating of microneedles with inactivated influenza virus to improve vaccine stability and immunogenicity. J Control Release 142:187–195PubMedCrossRefPubMedCentralGoogle Scholar
  203. 203.
    Quan FS et al (2010) Intradermal vaccination with influenza virus-like particles by using microneedles induces protection superior to that with intramuscular immunization. J Virol 84:7760–7769PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Corbett HJ et al (2010) Skin vaccination against cervical cancer associated human papillomavirus with a novel micro-projection array in a mouse model. PLoS One 5:e13460PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Saurer EM et al (2010) Layer-by-layer assembly of DNA- and protein-containing films on microneedles for drug delivery to the skin. Biomacromolecules 11:3136–3143PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Gill HS et al (2010) Cutaneous vaccination using microneedles coated with hepatitis C DNA vaccine. Gene Ther 17:811–814PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Gill HS et al (2007) Coating formulations for microneedles. Pharm Res 24:1369–1380PubMedCrossRefPubMedCentralGoogle Scholar
  208. 208.
    Ameri M et al (2010) Parathyroid Hormone PTH(1-34) formulation that enables uniform coating on a novel transdermal microprojection delivery system. Pharm Res 27:303–313PubMedCrossRefPubMedCentralGoogle Scholar
  209. 209.
    Lin W et al (2001) Transdermal delivery of antisense oligonucleotides with microprojection patch (Macroflux) technology. Pharm Res 18:1789–1793PubMedCrossRefPubMedCentralGoogle Scholar
  210. 210.
    Ma Y et al (2014) Vaccine delivery to the oral cavity using coated microneedles induces systemic and mucosal immunity. Pharm Res 31:2393–2403PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Ma Y et al (2014) Coating solid dispersions on microneedles via a molten dip-coating method: development and in vitro evaluation for transdermal delivery of a water-insoluble drug. J Pharm Sci 103:3621–3630PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Jain AK et al (2016) 5-Aminolevulinic acid coated microneedles for photodynamic therapy of skin tumors. J Control Release 239:72–81PubMedCrossRefGoogle Scholar
  213. 213.
    Zhao X et al (2018) Tip-loaded fast-dissolving microneedle patches for photodynamic therapy of subcutaneous tumor. J Control Release 286:201–209PubMedCrossRefGoogle Scholar
  214. 214.
    Donnelly RF et al (2014) Hydrogel-forming microneedles prepared from “Super swelling” polymers combined with lyophilised wafers for transdermal drug delivery. PLoS One 9:e111547PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Fakhraei Lahiji S et al (2018) Transcutaneous implantation of valproic acid-encapsulated dissolving microneedles induces hair regrowth. Biomaterials 167:69–79PubMedCrossRefPubMedCentralGoogle Scholar
  216. 216.
    Amodwala S et al (2017) Statistically optimized fast dissolving microneedle transdermal patch of meloxicam: a patient friendly approach to manage arthritis. Eur J Pharm Sci 104:114–123PubMedCrossRefGoogle Scholar
  217. 217.
    Lin S et al (2018) Novel strategy for immunomodulation: dissolving microneedle array encapsulating thymopentin fabricated by modified two-step molding technology. Eur J Pharm Biopharm 122:104–112PubMedCrossRefGoogle Scholar
  218. 218.
    Nguyen HX et al (2018) Poly (vinyl alcohol) microneedles: fabrication, characterization, and application for transdermal drug delivery of doxorubicin. Eur J Pharm Biopharm 129:88–103PubMedCrossRefGoogle Scholar
  219. 219.
    Migdadi EM et al (2018) Hydrogel-forming microneedles enhance transdermal delivery of metformin hydrochloride. J Control Release 285:142–151PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Machekposhti SA et al (2017) Biocompatible polymer microneedle for topical/dermal delivery of tranexamic acid. J Control Release 261:87–92CrossRefGoogle Scholar
  221. 221.
    González-Vázquez P et al (2017) Transdermal delivery of gentamicin using dissolving microneedle arrays for potential treatment of neonatal sepsis. J Control Release 265:30–40PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    Vora LK et al (2018) Novel nanosuspension-based dissolving microneedle arrays for transdermal delivery of a hydrophobic drug: nanosuspension, dissolving microneedles. J Interdiscip Nanomed 3:89–101PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Hutton ARJ et al (2018) Transdermal delivery of vitamin K using dissolving microneedles for the prevention of vitamin K deficiency bleeding. Int J Pharm 541:56–63PubMedPubMedCentralCrossRefGoogle Scholar
  224. 224.
    Mikszta JA et al (2002) Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. Nat Med 8:415–419PubMedCrossRefGoogle Scholar
  225. 225.
    Kaushik S et al (2001) Lack of pain associated with microfabricated microneedles. Anesth Analg 92:502–504PubMedCrossRefGoogle Scholar
  226. 226.
    Kim Y-C et al (2010) Formulation of microneedles coated with influenza virus-like particle vaccine. AAPS PharmSciTech 11:1193–1201PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Widera G et al (2006) Effect of delivery parameters on immunization to ovalbumin following intracutaneous administration by a coated microneedle array patch system. Vaccine 24:1653–1664PubMedCrossRefGoogle Scholar
  228. 228.
    Bal SM et al (2011) Small is beautiful: N-trimethyl chitosan–ovalbumin conjugates for microneedle-based transcutaneous immunisation. Vaccine 29:4025–4032PubMedCrossRefGoogle Scholar
  229. 229.
    Pearton M et al (2010) Influenza virus-like particles coated onto microneedles can elicit stimulatory effects on Langerhans cells in human skin. Vaccine 28:6104–6113PubMedPubMedCentralCrossRefGoogle Scholar
  230. 230.
    Larrañeta E et al (2016) Microneedle arrays as transdermal and intradermal drug delivery systems: materials science, manufacture and commercial development. Mater Sci Eng R Rep 104:1–32CrossRefGoogle Scholar
  231. 231.
    Chen X et al (2009) Dry-coated microprojection array patches for targeted delivery of immunotherapeutics to the skin. J Control Release 139:212–220PubMedCrossRefPubMedCentralGoogle Scholar
  232. 232.
    Wang PM et al (2006) Precise microinjection into skin using hollow microneedles. J Investig Dermatol 126:1080–1087PubMedCrossRefPubMedCentralGoogle Scholar
  233. 233.
    McAllister DV et al (2000) Microfabricated microneedles for gene and drug delivery. Annu Rev Biomed Eng 2:289–313PubMedCrossRefPubMedCentralGoogle Scholar
  234. 234.
    Daugimont L et al (2010) Hollow microneedle arrays for intradermal drug delivery and DNA electroporation. J Membr Biol 236:117–125PubMedCrossRefPubMedCentralGoogle Scholar
  235. 235.
    Park JH et al (2006) Polymer microneedles for controlled-release drug delivery. Pharm Res 23:1008–1019CrossRefPubMedPubMedCentralGoogle Scholar
  236. 236.
    Park J-H, Allen MG, Prausnitz MR (2004) Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol 1, pp 2654–2657Google Scholar
  237. 237.
    Prausnitz MR (2004) Microneedles for transdermal drug delivery. Adv Drug Deliv Rev 56:581–587PubMedCrossRefPubMedCentralGoogle Scholar
  238. 238.
    Martanto W et al (2006) Mechanism of fluid infusion during microneedle insertion and retraction. J Control Release 112:357–361PubMedCrossRefPubMedCentralGoogle Scholar
  239. 239.
    Norman JJ et al (2013) Faster pharmacokinetics and increased patient acceptance of intradermal insulin delivery using a single hollow microneedle in children and adolescents with type 1 diabetes: pediatric microneedle insulin delivery. Pediatr Diabetes 14:459–465PubMedCrossRefPubMedCentralGoogle Scholar
  240. 240.
    Chu LY et al (2011) Separable arrowhead microneedles. J Control Release 149:242–249PubMedCrossRefPubMedCentralGoogle Scholar
  241. 241.
    Lee JW et al (2008) Dissolving microneedles for transdermal drug delivery. Biomaterials 29:2113–2124PubMedPubMedCentralCrossRefGoogle Scholar
  242. 242.
    Chen M-C et al (2012) Chitosan microneedle patches for sustained transdermal delivery of macromolecules. Biomacromolecules 13:4022–4031PubMedCrossRefPubMedCentralGoogle Scholar
  243. 243.
    Miyano T et al (2005) Sugar micro needles as transdermic drug delivery system. Biomed Microdevices 7:185–188CrossRefGoogle Scholar
  244. 244.
    Kolli CS et al (2008) Characterization of solid maltose microneedles and their use for transdermal delivery. Pharm Res 25:104–113PubMedCrossRefPubMedCentralGoogle Scholar
  245. 245.
    Ito Y et al (2011) Two-layered dissolving microneedles for percutaneous delivery of sumatriptan in rats. Drug Dev Ind Pharm 37:1387–1393PubMedCrossRefPubMedCentralGoogle Scholar
  246. 246.
    Kim JD et al (2013) Droplet-born air blowing: novel dissolving microneedle fabrication. J Control Release 170:430–436PubMedCrossRefPubMedCentralGoogle Scholar
  247. 247.
    Donnelly RF et al (2012) Hydrogel-forming microneedle arrays for enhanced transdermal drug delivery. Adv Funct Mater 22:4879–4890PubMedPubMedCentralCrossRefGoogle Scholar
  248. 248.
    Yang S et al (2015) Phase-transition microneedle patches for efficient and accurate transdermal delivery of insulin. Adv Funct Mater 25:4633–4641CrossRefGoogle Scholar
  249. 249.
    Larrañeta E et al (2014) A proposed model membrane and test method for microneedle insertion studies. Int J Pharm 472:65–73PubMedPubMedCentralCrossRefGoogle Scholar
  250. 250.
    Garland MJ et al (2011) Electrically enhanced solute permeation across poly(ethylene glycol)–crosslinked poly(methyl vinyl ether-co-maleic acid) hydrogels: effect of hydrogel crosslink density and ionic conductivity. Int J Pharm 406:91–98PubMedCrossRefPubMedCentralGoogle Scholar
  251. 251.
    Donnelly RF et al (2013) Hydrogel-forming microneedle arrays exhibit antimicrobial properties: potential for enhanced patient safety. Int J Pharm 451:76–91PubMedPubMedCentralCrossRefGoogle Scholar
  252. 252.
    Yang S et al (2012) A scalable fabrication process of polymer microneedles. Int J Nanomedicine 7:1415–1422PubMedPubMedCentralGoogle Scholar
  253. 253.
    Desai RM et al (2015) Versatile click alginate hydrogels crosslinked via tetrazine–norbornene chemistry. Biomaterials 50:30–37PubMedCrossRefPubMedCentralGoogle Scholar
  254. 254.
    Li G et al (2009) In vitro transdermal delivery of therapeutic antibodies using maltose microneedles. Int J Pharm 368:109–115PubMedCrossRefPubMedCentralGoogle Scholar
  255. 255.
    Marques AP et al (2002) The biocompatibility of novel starch-based polymers and composites: in vitro studies. Biomaterials 23:1471–1478PubMedCrossRefPubMedCentralGoogle Scholar
  256. 256.
    Araújo MA et al (2004) Enzymatic degradation of starch-based thermoplastic compounds used in protheses: identification of the degradation products in solution. Biomaterials 25:2687–2693PubMedCrossRefPubMedCentralGoogle Scholar
  257. 257.
    Santander-Ortega MJ et al (2010) Nanoparticles made from novel starch derivatives for transdermal drug delivery. J Control Release 141:85–92PubMedCrossRefPubMedCentralGoogle Scholar
  258. 258.
    Marques AP et al (2005) AnIn vivo study of the host response to starch-based polymers and composites subcutaneously implanted in rats. Macromol Biosci 5:775–785PubMedCrossRefPubMedCentralGoogle Scholar
  259. 259.
    Désévaux C et al (2002) Tissue reaction and biodegradation of implanted cross-linked high amylose starch in rats: evaluation of implanted cross-linked starch. J Biomed Mater Res 63:772–779PubMedCrossRefPubMedCentralGoogle Scholar
  260. 260.
    Martin CJ et al (2012) Low temperature fabrication of biodegradable sugar glass microneedles for transdermal drug delivery applications. J Control Release 158:93–101PubMedCrossRefPubMedCentralGoogle Scholar
  261. 261.
    Donnelly RF et al (2009) Processing difficulties and instability of carbohydrate microneedle arrays. Drug Dev Ind Pharm 35:1242–1254PubMedPubMedCentralCrossRefGoogle Scholar
  262. 262.
    Akers MJ (2002) Excipient–drug interactions in parenteral formulations. J Pharm Sci 91:2283–2300PubMedCrossRefPubMedCentralGoogle Scholar
  263. 263.
    Shelke NB et al (2014) Polysaccharide biomaterials for drug delivery and regenerative engineering. Polym Adv Technol 25:448–460CrossRefGoogle Scholar
  264. 264.
    Miyamoto T et al (1989) Tissue biocompatibility of cellulose and its derivatives. J Biomed Mater Res 23:125–133PubMedCrossRefPubMedCentralGoogle Scholar
  265. 265.
    Dhar N et al (2012) Biodegradable and biocompatible polyampholyte microgels derived from chitosan, carboxymethyl cellulose and modified methyl cellulose. Carbohydr Polym 87:101–109CrossRefGoogle Scholar
  266. 266.
    Juneja HD et al (2013) Synthesis and characterization of metallic gel complexes derived from carboxymethyl cellulose. J Chem 2013:1–6CrossRefGoogle Scholar
  267. 267.
    Rodrigues A et al (2012) Recent applications of starch derivatives in nanodrug delivery. Carbohydr Polym 87:987–994CrossRefGoogle Scholar
  268. 268.
    Zhang J-F et al (2004) Mechanical properties of poly(lactic acid)/starch composites compatibilized by maleic anhydride. Biomacromolecules 5:1446–1451PubMedCrossRefPubMedCentralGoogle Scholar
  269. 269.
    Hreczuk-Hirst D et al (2001) Dextrins as potential carriers for drug targeting: tailored rates of dextrin degradation by introduction of pendant groups. Int J Pharm 230:57–66PubMedCrossRefPubMedCentralGoogle Scholar
  270. 270.
    Croisier F et al (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49:780–792CrossRefGoogle Scholar
  271. 271.
    Markovsky E et al (2012) Administration, distribution, metabolism and elimination of polymer therapeutics. J Control Release 161:446–460PubMedCrossRefPubMedCentralGoogle Scholar
  272. 272.
    Goh CH et al (2012) Alginates as a useful natural polymer for microencapsulation and therapeutic applications. Carbohydr Polym 88:1–12CrossRefGoogle Scholar
  273. 273.
    Nair LS et al (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798CrossRefGoogle Scholar
  274. 274.
    Necas J et al (2008) Hyaluronic acid (hyaluronan): a review. Vet Med 53:397–411CrossRefGoogle Scholar
  275. 275.
    Zhang B et al (2014) Oral delivery of exenatide via microspheres prepared by cross-linking of alginate and hyaluronate. PLoS One 9:e86064PubMedPubMedCentralCrossRefGoogle Scholar
  276. 276.
    Cao Y et al (2016) Development of sinomenine hydrochloride-loaded polyvinylalcohol/maltose microneedle for transdermal delivery. J Drug Delivery Sci Technol 35:1–7CrossRefGoogle Scholar
  277. 277.
    Rădulescu D et al (2016) Biocompatible cephalosporin-hydroxyapatite-poly(lactic-co-glycolic acid)-coatings fabricated by MAPLE technique for the prevention of bone implant associated infections. Appl Surf Sci 374:387–396CrossRefGoogle Scholar
  278. 278.
    An L et al (2016) Controlled additive-free hydrothermal synthesis and characterization of uniform hydroxyapatite nanobelts. Ceram Int 42:3104–3112CrossRefGoogle Scholar
  279. 279.
    Hassan MN et al (2016) Microwave-assisted preparation of Nano-hydroxyapatite for bone substitutes. Ceram Int 42:3725–3744CrossRefGoogle Scholar
  280. 280.
    Šupová M (2015) Substituted hydroxyapatites for biomedical applications: a review. Ceram Int 41:9203–9231CrossRefGoogle Scholar
  281. 281.
    Yan J et al (2016) Injectable alginate/hydroxyapatite gel scaffold combined with gelatin microspheres for drug delivery and bone tissue engineering. Mater Sci Eng C 63:274–284CrossRefGoogle Scholar
  282. 282.
    Hu Y et al (2016) Facile fabrication of poly(L-lactic acid) microsphere-incorporated calcium alginate/hydroxyapatite porous scaffolds based on Pickering emulsion templates. Colloids Surf B: Biointerfaces 140:382–391PubMedCrossRefPubMedCentralGoogle Scholar
  283. 283.
    Okamoto S et al (2012) Poly-γ-glutamic acid nanoparticles and aluminum adjuvant used as an adjuvant with a single dose of Japanese encephalitis virus-like particles provide effective protection from japanese encephalitis virus. Clin Vaccine Immunol 19:17–22PubMedPubMedCentralCrossRefGoogle Scholar
  284. 284.
    Davaatseren M et al (2013) Poly- γ -glutamic acid attenuates angiogenesis and inflammation in experimental colitis. Mediat Inflamm 2013:1–8CrossRefGoogle Scholar
  285. 285.
    Scaldaferri F et al (2009) VEGF-A links angiogenesis and inflammation in inflammatory bowel disease pathogenesis. Gastroenterology 136:585–595.e585PubMedCrossRefPubMedCentralGoogle Scholar
  286. 286.
    Peng S-F et al (2009) Effects of incorporation of poly(γ-glutamic acid) in chitosan/DNA complex nanoparticles on cellular uptake and transfection efficiency. Biomaterials 30:1797–1808PubMedCrossRefPubMedCentralGoogle Scholar
  287. 287.
    Su F-Y et al (2012) Protease inhibition and absorption enhancement by functional nanoparticles for effective oral insulin delivery. Biomaterials 33:2801–2811PubMedCrossRefPubMedCentralGoogle Scholar
  288. 288.
    Shima F et al (2013) Manipulating the antigen-specific immune response by the hydrophobicity of amphiphilic poly(γ-glutamic acid) nanoparticles. Biomaterials 34:9709–9716PubMedCrossRefPubMedCentralGoogle Scholar
  289. 289.
    Shima F et al (2013) Synergistic stimulation of antigen presenting cells via TLR by combining CpG ODN and poly(γ-glutamic acid)-based nanoparticles as vaccine adjuvants. Bioconjug Chem 24:926–933PubMedCrossRefPubMedCentralGoogle Scholar
  290. 290.
    Marshall S et al (2017) Acceptability of microneedle-patch vaccines: a qualitative analysis of the opinions of parents. Vaccine 35:4896–4904PubMedCrossRefPubMedCentralGoogle Scholar
  291. 291.
    Arya J et al (2017) Tolerability, usability and acceptability of dissolving microneedle patch administration in human subjects. Biomaterials 128:1–7PubMedPubMedCentralCrossRefGoogle Scholar
  292. 292.
    Bhatnagar S et al (2017) Microneedles in the clinic. J Control Release 260:164–182PubMedCrossRefPubMedCentralGoogle Scholar
  293. 293.
    Donnelly RF et al (2010) Microneedle-based drug delivery systems: microfabrication, drug delivery, and safety. Drug Deliv 17:187–207PubMedPubMedCentralCrossRefGoogle Scholar
  294. 294.
    Kim M et al (2014) Novel cosmetic patches for wrinkle improvement: retinyl retinoate- and ascorbic acid-loaded dissolving microneedles. Int J Cosmet Sci 36:207–212PubMedCrossRefPubMedCentralGoogle Scholar
  295. 295.
    Alster TSMDL, Jason RMD (2002) Prevention and treatment of side effects and complications of cutaneous laser resurfacing. Plast Reconstr Surg 109:308–316PubMedCrossRefPubMedCentralGoogle Scholar
  296. 296.
    Chauhan P et al (2009) Modeling signaling pathways leading to wrinkle formation: identification of the skin aging target. Indian J Dermatol Venereol Leprol 75:463PubMedCrossRefPubMedCentralGoogle Scholar
  297. 297.
    Lee JY et al (2008) Loss of elastic fibers causes skin wrinkles in sun-damaged human skin. J Dermatol Sci 50:99–107PubMedCrossRefPubMedCentralGoogle Scholar
  298. 298.
    Scharffetter–Kochanek K et al (2000) Photoaging of the skin from phenotype to mechanisms. Exp Gerontol 35:307–316PubMedCrossRefPubMedCentralGoogle Scholar
  299. 299.
    Lee C et al (2016) Evaluation of the anti-wrinkle effect of an ascorbic acid-loaded dissolving microneedle patch via a double-blind, placebo-controlled clinical study. Int J Cosmet Sci 38:375–381PubMedCrossRefPubMedCentralGoogle Scholar
  300. 300.
    Frei B (1994) Reactive oxygen species and antioxidant vitamins: mechanisms of action. Am J Med 97:S5–S13CrossRefGoogle Scholar
  301. 301.
    Zasada M et al (2018) Preliminary randomized controlled trial of antiaging effects of l-ascorbic acid applied in combination with no-needle and microneedle mesotherapy. J Cosmet DermatolGoogle Scholar
  302. 302.
    Brown M et al (2005) Hyaluronic acid: a unique topical vehicle for the localized delivery of drugs to the skin. J Eur Acad Dermatol Venereol 19:308–318PubMedCrossRefPubMedCentralGoogle Scholar
  303. 303.
    Kang G et al (2018) Adenosine-loaded dissolving microneedle patches to improve skin wrinkles, dermal density, elasticity and hydration. Int J Cosmet Sci 40:199–206PubMedCrossRefGoogle Scholar
  304. 304.
    Kim S et al (2016) 4-n-butylresorcinol dissolving microneedle patch for skin depigmentation: a randomized, double-blind, placebo-controlled trial. J Cosmet Dermatol 15:16–23PubMedCrossRefGoogle Scholar
  305. 305.
    Brenner M et al (2008) The protective role of melanin against UV damage in human skin. Photochem Photobiol 84:539–549PubMedPubMedCentralCrossRefGoogle Scholar
  306. 306.
    Costin G-E et al (2007) Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB J 21:976–994PubMedCrossRefGoogle Scholar
  307. 307.
    Seo D-H et al (2012) Biotechnological production of arbutins (α- and β-arbutins), skin-lightening agents, and their derivatives. Appl Microbiol Biotechnol 95:1417–1425PubMedCrossRefGoogle Scholar
  308. 308.
    Garcia-Jimenez A et al (2016) 4-n-butylresorcinol, a depigmenting agent used in cosmetics, reacts with tyrosinase. IUBMB Life 68:663–672PubMedCrossRefGoogle Scholar
  309. 309.
    Gust PJ et al (2016) Kojic acid J Dermatol Nurses’ Assoc 8:338–340Google Scholar
  310. 310.
    Chow ML et al (2016) Hydroquinone J Dermatol Nurses’ Assoc 8:78–79CrossRefGoogle Scholar
  311. 311.
    Kolbe L et al (2013) 4-n-butylresorcinol, a highly effective tyrosinase inhibitor for the topical treatment of hyperpigmentation. J Eur Acad Dermatol Venereol 27:19–23PubMedCrossRefGoogle Scholar
  312. 312.
    Kini S et al (2018) Hirsutism. Obstet Gynaecol Reprod Med 28:129–135CrossRefGoogle Scholar
  313. 313.
    Somani N et al (2014) Hirsutism: an evidence-based treatment update. Am J Clin Dermatol 15:247–266PubMedCrossRefGoogle Scholar
  314. 314.
    Writers AM (2014) Identify underlying cause of hirsutism and individualize treatment as required. Drugs Ther Perspect 30:417–421CrossRefGoogle Scholar
  315. 315.
    Kumar A et al (2016) A method to improve the efficacy of topical eflornithine hydrochloride cream. Drug Deliv 23:1495–1501PubMedGoogle Scholar
  316. 316.
    Aronson JK (2016) In Meyer’s side effects of drugs. Elsevier BV. pp 32–34Google Scholar
  317. 317.
    Clark AK et al (2018) Acne Scars: how do we grade them? Am J Clin Dermatol 19:139–144PubMedCrossRefGoogle Scholar
  318. 318.
    Simmons BJ et al (2014) Use of radiofrequency in cosmetic dermatology: focus on nonablative treatment of acne scars. Clin Cosmet Investig Dermatol 7:335–339PubMedPubMedCentralCrossRefGoogle Scholar
  319. 319.
    Dogra S et al (2014) Microneedling for acne scars in Asian skin type: an effective low cost treatment modality. J Cosmet Dermatol 13:180–187PubMedCrossRefGoogle Scholar
  320. 320.
    Doddaballapur S (2009) Microneedling with dermaroller. J Cutan Aesthet Surg 2:110–111PubMedPubMedCentralCrossRefGoogle Scholar
  321. 321.
    Pudukadan D (2017) Treatment of acne scars on darker skin types using a noninsulated smooth motion, electronically controlled radiofrequency microneedles treatment system. Dermatol Surg 43(Suppl 1):S64–s69PubMedCrossRefPubMedCentralGoogle Scholar
  322. 322.
    Cho SI et al (2012) Evaluation of the clinical efficacy of fractional radiofrequency microneedle treatment in acne scars and large facial pores. Dermatol Surg 38:1017–1024PubMedCrossRefPubMedCentralGoogle Scholar
  323. 323.
    Zhang M et al (2018) A prospective study of the safety and efficacy of a microneedle fractional radiofrequency system for global facial photoaging in chinese patients. Dermatol Surg 44:964–970PubMedCrossRefPubMedCentralGoogle Scholar
  324. 324.
    Tanaka Y (2015) Long-term three-dimensional volumetric assessment of skin tightening using a sharply tapered non-insulated microneedle radiofrequency applicator with novel fractionated pulse mode in asians. Lasers Surg Med 47:626–633PubMedCrossRefPubMedCentralGoogle Scholar
  325. 325.
    Lu W et al (2017) Curative effects of microneedle fractional radiofrequency system on skin laxity in Asian patients: a prospective, double-blind, randomized, controlled face-split study. J Cosmet Laser Ther 19:83–88PubMedCrossRefPubMedCentralGoogle Scholar
  326. 326.
    Lee SJ et al (2015) Treatment of periorbital wrinkles with a novel fractional radiofrequency microneedle system in dark-skinned patients. Dermatol Surg 41:615–622PubMedCrossRefPubMedCentralGoogle Scholar
  327. 327.
    Seo KY et al (2013) Skin rejuvenation by microneedle fractional radiofrequency and a human stem cell conditioned medium in Asian skin: a randomized controlled investigator blinded split-face study. J Cosmet Laser Ther 15:25–33PubMedCrossRefPubMedCentralGoogle Scholar
  328. 328.
    K. U. C. o. M. Kim ST; Department of Dermatology, Busan, South Korea et al (2014) Treatment of acne vulgaris with fractional radiofrequency microneedling. J Dermatol 41:586–591CrossRefGoogle Scholar
  329. 329.
    Cachafeiro TM, Escobar G, Maldonado G, Cestari T, Corleta O (2016) Comparison of nonablative fractional erbium laser 1,340 nm and microneedling for the treatment of atrophic acne scars: a randomized clinical trial. Dermatol Surg 42:232–241PubMedCrossRefPubMedCentralGoogle Scholar
  330. 330.
    Park JY et al (2016) The efficacy and safety of combined microneedle fractional radiofrequency and sublative fractional radiofrequency for acne scars in Asian skin. J Cosmet Dermatol 15:102–107PubMedCrossRefGoogle Scholar
  331. 331.
    Fabbrocini GPMM, Claudio MD, Ammad S, Brazzini B, Izzo R, Donnarumma M, Monfrecola G (2019) Assessment of the combined efficacy of needling and the use of silicone gel in the treatment of c-section and other surgical hypertrophic scars and keloids. Adv Skin Wound Care 29:408–411CrossRefGoogle Scholar
  332. 332.
    Fabbrocini G et al (2011) Skin needling to enhance depigmenting serum penetration in the treatment of melasma. Plast Surg Int 2011:158241PubMedPubMedCentralGoogle Scholar
  333. 333.
    Dhurat R, Sukesh M, Avhad G, Dandale A, Pal A, Pund P (2013) A randomized evaluator blinded study of effect of microneedling in androgenetic alopecia: a pilot study. Int J Trichology 5:6–11PubMedPubMedCentralCrossRefGoogle Scholar
  334. 334.
    Park Y et al (2015) Transdermal delivery of cosmetic ingredients using dissolving polymer microneedle arrays. Biotechnol Bioprocess Eng 20:543–549CrossRefGoogle Scholar
  335. 335.
    Singh A et al (2016) Microneedling: advances and widening horizons. Indian Dermatol Online J 7:244–254PubMedPubMedCentralCrossRefGoogle Scholar
  336. 336.
    McCrudden MTC et al (2015) Microneedle applications in improving skin appearance. Exp Dermatol 24:561–566PubMedCrossRefPubMedCentralGoogle Scholar
  337. 337.
    Shim WS et al (2018) Role of polyvinylpyrrolidone in dissolving microneedle for efficient transdermal drug delivery: in vitro and clinical studies. Bull Kor Chem Soc 39:789–793CrossRefGoogle Scholar
  338. 338.
    Yang H et al (2017) Centrifugal lithography: centrifugal lithography: self-shaping of polymer microstructures encapsulating biopharmaceutics by centrifuging polymer drops (Adv. Healthcare Mater. 19/2017). Adv Healthc Mater 6Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jaspreet Singh Kochhar
    • 1
  • Justin J. Y. Tan
    • 2
  • Yee Chin Kwang
    • 3
  • Lifeng Kang
    • 3
  1. 1.Procter & GambleSingaporeSingapore
  2. 2.Department of PharmacyNational University of SingaporeSingaporeSingapore
  3. 3.School of PharmacyUniversity of SydneySydneyAustralia

Personalised recommendations