Advertisement

A Simple Method of Microneedle Array Fabrication for Transdermal Drug Delivery

  • Jaspreet Singh Kochhar
  • Justin J. Y. Tan
  • Yee Chin Kwang
  • Lifeng Kang
Chapter

Abstract

Current techniques to fabricate microneedles remain challenging – sugar-based polymeric materials are unstable at high temperatures in casting methods, other techniques limit drug encapsulation and some require sophisticated machinery, thereby incurring high costs and become inaccessible. In this chapter, we describe a simple photolithographical approach to fabricate polymeric microneedles, using poly (ethylene glycol) diacrylate (PEGDA), a biocompatible and commonly used substrate in tissue engineering. This process is a one-step method by UV photolithography, amenable to other photocrosslinkable polymers and suitable for scaling up commercially.

Keywords

Simple Poly (ethylene glycol) diacrylate PEGDA Photolithography Microneedle array 

References

  1. 1.
    Miyano T et al (2005) Sugar micro needles as transdermic drug delivery system. Biomed Microdevices 7:185–188CrossRefGoogle Scholar
  2. 2.
    Donnelly RF et al (2009) Processing difficulties and instability of carbohydrate microneedle arrays. Drug Dev Ind Pharm 35:1242–1254CrossRefGoogle Scholar
  3. 3.
    Lee JW et al (2008) Dissolving microneedles for transdermal drug delivery. Biomaterials 29:2113–2124CrossRefGoogle Scholar
  4. 4.
    Park JH et al (2006) Polymer microneedles for controlled-release drug delivery. Pharm Res 23:1008–1019CrossRefGoogle Scholar
  5. 5.
    Park JH et al (2010) A microneedle roller for transdermal drug delivery. Eur J Pharm Biopharm 76:282–289CrossRefGoogle Scholar
  6. 6.
    Ito Y et al (2006) Feasibility of microneedles for percutaneous absorption of insulin. Eur J Pharm Sci 29:82–88CrossRefGoogle Scholar
  7. 7.
    Ito Y et al (2008) Evaluation of self-dissolving needles containing low molecular weight heparin (LMWH) in rats. Int J Pharm 349:124–129CrossRefGoogle Scholar
  8. 8.
    Ito Y et al (2006) Self-dissolving microneedles for the percutaneous absorption of EPO in mice. J Drug Target 14:255–261CrossRefGoogle Scholar
  9. 9.
    Ito Y et al (2010) Molecular weight dependence on bioavailability of FITC-dextran after administration of self-dissolving micropile to rat skin. Drug Dev Ind Pharm 36:845–851CrossRefGoogle Scholar
  10. 10.
    Sun G et al (2006) Synthesis, characterization of biodegradable dextran-allyl isocyanate-ethylamine/polyethylene glycol-diacrylate hydrogels and their in vitro release of albumin. Carbohydr Polym 65:273–287CrossRefGoogle Scholar
  11. 11.
    Pasut G et al (2007) Polymer-drug conjugation, recent achievements and general strategies. Prog Polym Sci (Oxford) 32:933–961CrossRefGoogle Scholar
  12. 12.
    Mellott MB et al (2001) Release of protein from highly cross-linked hydrogels of poly(ethylene glycol) diacrylate fabricated by UV polymerization. Biomaterials 22:929–941CrossRefGoogle Scholar
  13. 13.
    Sullivan SP et al (2010) Dissolving polymer microneedle patches for influenza vaccination. Nat Med 16:915–920CrossRefGoogle Scholar
  14. 14.
    Sullivan SP et al (2008) Minimally invasive protein delivery with rapidly dissolving polymer microneedles. Adv Mater 20:933–938CrossRefGoogle Scholar
  15. 15.
    Chan V et al (2010) Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation. Lab Chip 10:2062–2070CrossRefGoogle Scholar
  16. 16.
    Kang L et al (2010) Cell confinement in patterned nanoliter droplets in a microwell array by wiping. J Biomed Mater Res A 93:547–557PubMedPubMedCentralGoogle Scholar
  17. 17.
    Khademhosseini A et al (2004) Molded polyethylene glycol microstructures for capturing cells within microfluidic channels. Lab Chip 4:425–430CrossRefGoogle Scholar
  18. 18.
    Phillips AJ (ed) (2007) Contact lenses. Elsevier, London, pp 548–549Google Scholar
  19. 19.
    Wang PM et al (2006) Precise microinjection into skin using hollow microneedles. J Invest Dermatol 126:1080–1087CrossRefGoogle Scholar
  20. 20.
    Kerwin BA et al (2007) Protect from light: photodegradation and protein biologics. J Pharm Sci 96:1468–1479CrossRefGoogle Scholar
  21. 21.
    Kindernay J et al (2002) Effect of UV light source intensity and spectral distribution on the photopolymerisation reactions of a multifunctional acrylated monomer. J Photochem Photobiol A Chem 151:229–236CrossRefGoogle Scholar
  22. 22.
    Donnelly RF et al (2009) Microneedle arrays allow lower microbial penetration than hypodermic needles in vitro. Pharm Res 26:2513–2522CrossRefGoogle Scholar
  23. 23.
    Xie Y et al (2005) Controlled transdermal delivery of model drug compounds by MEMS microneedle array. Nanomedicine 1:184–190CrossRefGoogle Scholar
  24. 24.
    Brown MB (2003) Transdermal drug delivery. In: Jain KK (ed) Drug delivery systems, chap. 6, 2nd edn. CRC Press, BaselGoogle Scholar
  25. 25.
    Kochhar JS, Goh WJ, Chan SY, Kang L (2013) A simple method of microneedle array fabrication for transdermal drug delivery. Drug Dev Ind Pharm 39:299–309CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jaspreet Singh Kochhar
    • 1
  • Justin J. Y. Tan
    • 2
  • Yee Chin Kwang
    • 3
  • Lifeng Kang
    • 3
  1. 1.Procter & GambleSingaporeSingapore
  2. 2.Department of PharmacyNational University of SingaporeSingaporeSingapore
  3. 3.School of PharmacyUniversity of SydneySydneyAustralia

Personalised recommendations